
-
Previous Article
Solution to a stochastic pursuit model using moment equations
- DCDS-B Home
- This Issue
-
Next Article
Optimal control of a delayed HIV model
Does assortative mating lead to a polymorphic population? A toy model justification
1. | Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland |
2. | Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland |
We consider a model of phenotypic evolution in populations with assortative mating of individuals. The model is given by a nonlinear operator acting on the space of probability measures and describes the relation between parental and offspring trait distributions. We study long-time behavior of trait distribution and show that it converges to a combination of Dirac measures. This result means that assortative mating can lead to a polymorphic population and sympatric speciation.
References:
[1] |
N. H Barton, A. M. Etheridge and A. Véber,
The infinitesimal model: Definition, derivation, and implications, Theor. Popul Biol., (2007).
doi: 10.1016/j.tpb.2017.06.001. |
[2] |
P. Billingsley, Probability and Measure, John Wiley and Sons, New York, 1986.
![]() |
[3] |
M. G. Bulmer, The Mathematical Theory of Quantitative Genetics, Clarendon Press, Oxford, 1980.
![]() |
[4] |
J. A. Cañizo, J. A. Carrillo and S. Cuadrado,
Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141-156.
doi: 10.1007/s10440-012-9758-3. |
[5] |
L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul,
On selection dynamics for continuous populations, Commun. Math. Sci., 6 (2008), 729-747.
doi: 10.4310/CMS.2008.v6.n3.a10. |
[6] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame,
The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul Biol., 67 (2005), 257-271.
doi: 10.1016/j.tpb.2004.12.003. |
[7] |
U. Dieckmann and M. Doebeli,
On the origin of species by sympatric speciation, Nature, 400 (1999), 354-357.
doi: 10.1038/22521. |
[8] |
M. Doebeli, H. J. Blok, O. Leimar and U. Dieckmann,
Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, 274 (2007), 347-357.
doi: 10.1098/rspb.2006.3725. |
[9] |
R. A. Fisher,
The correlations between relatives on the supposition of Mendelian inheritance, Trans. R. Soc. Edinburgh, 52 (1919), 399-433.
doi: 10.1017/S0080456800012163. |
[10] |
S. Gavrilets and C. R. B. Boake,
On the evolution of premating isolation after a founder event, The American Naturalist, 152 (1998), 706-716.
doi: 10.1086/286201. |
[11] |
P. Hinow,
Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math., 70 (2009), 40-62.
doi: 10.1137/080732420. |
[12] |
P. Jabin and G. Raoul,
On selection dynamics for competitive interactions, J. Math. Biol., 63 (2011), 493-517.
doi: 10.1007/s00285-010-0370-8. |
[13] |
F. A. Kondrashov and A. S. Kondrashov,
Interactions among quantitative traits in the course of sympatric speciation, Nature, 400 (1999), 351-354.
doi: 10.1038/22514. |
[14] |
C. Matessi, A. Gimelfarb and S. Gavrilets,
Long-term buildup of reproductive isolation promoted by disruptive selection: How far does it go?, Selection, 2 (2001), 41-64.
doi: 10.1556/Select.2.2001.1-2.4. |
[15] |
J. Maynard Smith,
Sympatric speciation, Am. Nat., 100 (1966), 637-650.
doi: 10.1086/282457. |
[16] |
P. Michel,
A singular asymptotic behavior of a transport equation, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 155-159.
doi: 10.1016/j.crma.2007.12.010. |
[17] |
B. Perthame,
Transport Equations in Biology Frontiers in Mathematics, Birkhäuser, Basel, 2007. |
[18] |
J. Polechová and N. H. Barton, Speciation through competition: A critical review, Evolution, 59 (2005), 1194-1210. Google Scholar |
[19] |
O. Puebla, E. Bermingham and F. Guichard,
Pairing dynamics and the origin of species, Proc. Biol. Sci., 279 (2012), 1085-1092.
doi: 10.1098/rspb.2011.1549. |
[20] |
R. Rudnicki and R. Wieczorek,
On a nonlinear age-structured model of semelparous species, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2641-2656.
doi: 10.3934/dcdsb.2014.19.2641. |
[21] |
R. Rudnicki and P. Zwoleński,
Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol., 70 (2015), 1295-1321.
doi: 10.1007/s00285-014-0798-3. |
[22] |
K. A. Schneider and R. Bürger, Does competitive divergence occur if assortative mating is costly?, Journal of Evolutionary Biology, 19 (2006), 570-588. Google Scholar |
[23] |
K. A. Schneider and S. Peischl,
Evolution of assortative mating in a population expressing dominance, PLoS ONE, 6 (2011), e16821.
doi: 10.1371/journal.pone.0016821. |
[24] |
P. Zwoleński,
Trait evolution in two-sex populations, Math. Mod. Nat. Phenom., 10 (2015), 163-181.
doi: 10.1051/mmnp/20150611. |
show all references
References:
[1] |
N. H Barton, A. M. Etheridge and A. Véber,
The infinitesimal model: Definition, derivation, and implications, Theor. Popul Biol., (2007).
doi: 10.1016/j.tpb.2017.06.001. |
[2] |
P. Billingsley, Probability and Measure, John Wiley and Sons, New York, 1986.
![]() |
[3] |
M. G. Bulmer, The Mathematical Theory of Quantitative Genetics, Clarendon Press, Oxford, 1980.
![]() |
[4] |
J. A. Cañizo, J. A. Carrillo and S. Cuadrado,
Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141-156.
doi: 10.1007/s10440-012-9758-3. |
[5] |
L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul,
On selection dynamics for continuous populations, Commun. Math. Sci., 6 (2008), 729-747.
doi: 10.4310/CMS.2008.v6.n3.a10. |
[6] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame,
The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul Biol., 67 (2005), 257-271.
doi: 10.1016/j.tpb.2004.12.003. |
[7] |
U. Dieckmann and M. Doebeli,
On the origin of species by sympatric speciation, Nature, 400 (1999), 354-357.
doi: 10.1038/22521. |
[8] |
M. Doebeli, H. J. Blok, O. Leimar and U. Dieckmann,
Multimodal pattern formation in phenotype distributions of sexual populations, Proc. R. Soc. B, 274 (2007), 347-357.
doi: 10.1098/rspb.2006.3725. |
[9] |
R. A. Fisher,
The correlations between relatives on the supposition of Mendelian inheritance, Trans. R. Soc. Edinburgh, 52 (1919), 399-433.
doi: 10.1017/S0080456800012163. |
[10] |
S. Gavrilets and C. R. B. Boake,
On the evolution of premating isolation after a founder event, The American Naturalist, 152 (1998), 706-716.
doi: 10.1086/286201. |
[11] |
P. Hinow,
Analysis of a model for transfer phenomena in biological populations, SIAM J. Appl. Math., 70 (2009), 40-62.
doi: 10.1137/080732420. |
[12] |
P. Jabin and G. Raoul,
On selection dynamics for competitive interactions, J. Math. Biol., 63 (2011), 493-517.
doi: 10.1007/s00285-010-0370-8. |
[13] |
F. A. Kondrashov and A. S. Kondrashov,
Interactions among quantitative traits in the course of sympatric speciation, Nature, 400 (1999), 351-354.
doi: 10.1038/22514. |
[14] |
C. Matessi, A. Gimelfarb and S. Gavrilets,
Long-term buildup of reproductive isolation promoted by disruptive selection: How far does it go?, Selection, 2 (2001), 41-64.
doi: 10.1556/Select.2.2001.1-2.4. |
[15] |
J. Maynard Smith,
Sympatric speciation, Am. Nat., 100 (1966), 637-650.
doi: 10.1086/282457. |
[16] |
P. Michel,
A singular asymptotic behavior of a transport equation, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 155-159.
doi: 10.1016/j.crma.2007.12.010. |
[17] |
B. Perthame,
Transport Equations in Biology Frontiers in Mathematics, Birkhäuser, Basel, 2007. |
[18] |
J. Polechová and N. H. Barton, Speciation through competition: A critical review, Evolution, 59 (2005), 1194-1210. Google Scholar |
[19] |
O. Puebla, E. Bermingham and F. Guichard,
Pairing dynamics and the origin of species, Proc. Biol. Sci., 279 (2012), 1085-1092.
doi: 10.1098/rspb.2011.1549. |
[20] |
R. Rudnicki and R. Wieczorek,
On a nonlinear age-structured model of semelparous species, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2641-2656.
doi: 10.3934/dcdsb.2014.19.2641. |
[21] |
R. Rudnicki and P. Zwoleński,
Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol., 70 (2015), 1295-1321.
doi: 10.1007/s00285-014-0798-3. |
[22] |
K. A. Schneider and R. Bürger, Does competitive divergence occur if assortative mating is costly?, Journal of Evolutionary Biology, 19 (2006), 570-588. Google Scholar |
[23] |
K. A. Schneider and S. Peischl,
Evolution of assortative mating in a population expressing dominance, PLoS ONE, 6 (2011), e16821.
doi: 10.1371/journal.pone.0016821. |
[24] |
P. Zwoleński,
Trait evolution in two-sex populations, Math. Mod. Nat. Phenom., 10 (2015), 163-181.
doi: 10.1051/mmnp/20150611. |






[1] |
Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265 |
[2] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[3] |
Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17 |
[4] |
Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure & Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331 |
[5] |
Shaojun Zhang, Zhong Wan. Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive. Journal of Industrial & Management Optimization, 2012, 8 (2) : 493-505. doi: 10.3934/jimo.2012.8.493 |
[6] |
Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004 |
[7] |
Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617 |
[8] |
Jianjun Tian, Bai-Lian Li. Coalgebraic Structure of Genetic Inheritance. Mathematical Biosciences & Engineering, 2004, 1 (2) : 243-266. doi: 10.3934/mbe.2004.1.243 |
[9] |
Xuguang Lu. Long time strong convergence to Bose-Einstein distribution for low temperature. Kinetic & Related Models, 2018, 11 (4) : 715-734. doi: 10.3934/krm.2018029 |
[10] |
Yucheng Bu, Yujun Dong. Existence of solutions for nonlinear operator equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4429-4441. doi: 10.3934/dcds.2019180 |
[11] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025 |
[12] |
Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013 |
[13] |
Karan Pattni, Mark Broom, Jan Rychtář. Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1975-2004. doi: 10.3934/dcdsb.2018191 |
[14] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
[15] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[16] |
Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821 |
[17] |
Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75 |
[18] |
Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331 |
[19] |
Qianzhong Ou. Nonexistence results for a fully nonlinear evolution inequality. Electronic Research Announcements, 2016, 23: 19-24. doi: 10.3934/era.2016.23.003 |
[20] |
Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881 |
2018 Impact Factor: 1.008
Tools
Article outline
Figures and Tables
[Back to Top]