January  2018, 23(1): 487-492. doi: 10.3934/dcdsb.2018033

On homoclinic solutions for a second order difference equation with p-Laplacian

Institute of Mathematics, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland

Received  July 2016 Revised  September 2016 Published  January 2018

In this paper, we obtain conditions under which the difference equation
$-Δ ≤ft( a(k)φ _{p}(Δ u(k-1))) +b(k)φ_{p}(u(k))=λ f(k, u(k)), \;\;k∈\mathbb{Z}, $
has infinitely many homoclinic solutions. A variant of the fountain theorem is utilized in the proof of our theorem. Some known results in the literature are extended and complemented.
Citation: Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033
References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp.  Google Scholar

[2]

A. Iannizzotto and S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.  doi: 10.1016/j.jmaa.2013.02.011.  Google Scholar

[3]

L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121.  doi: 10.1016/j.amc.2014.09.069.  Google Scholar

[4]

L. Kong, Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146.  doi: 10.1016/j.indag.2015.08.007.  Google Scholar

[5]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[6]

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[7]

R. Stegliński,, On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp.  doi: 10.1186/s13662-017-1344-6.  Google Scholar

[8]

R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.   Google Scholar

[9]

G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages. doi: 10.1155/2014/276372.  Google Scholar

show all references

References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp.  Google Scholar

[2]

A. Iannizzotto and S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.  doi: 10.1016/j.jmaa.2013.02.011.  Google Scholar

[3]

L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121.  doi: 10.1016/j.amc.2014.09.069.  Google Scholar

[4]

L. Kong, Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146.  doi: 10.1016/j.indag.2015.08.007.  Google Scholar

[5]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[6]

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.  doi: 10.1016/S0377-0427(99)00269-1.  Google Scholar

[7]

R. Stegliński,, On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp.  doi: 10.1186/s13662-017-1344-6.  Google Scholar

[8]

R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.   Google Scholar

[9]

G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages. doi: 10.1155/2014/276372.  Google Scholar

[1]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[2]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[3]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[4]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[5]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[6]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[7]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[8]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[9]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[10]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[11]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[13]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[14]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[15]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[16]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[17]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[18]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[19]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[20]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (65)
  • HTML views (119)
  • Cited by (1)

Other articles
by authors

[Back to Top]