- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Solution to a stochastic pursuit model using moment equations
On homoclinic solutions for a second order difference equation with p-Laplacian
Institute of Mathematics, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland |
$-Δ ≤ft( a(k)φ _{p}(Δ u(k-1))) +b(k)φ_{p}(u(k))=λ f(k, u(k)), \;\;k∈\mathbb{Z}, $ |
References:
[1] |
G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,
Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp. |
[2] |
A. Iannizzotto and S. Tersian,
Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.
doi: 10.1016/j.jmaa.2013.02.011. |
[3] |
L. Kong,
Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121.
doi: 10.1016/j.amc.2014.09.069. |
[4] |
L. Kong,
Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146.
doi: 10.1016/j.indag.2015.08.007. |
[5] |
S. Liu,
On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016. |
[6] |
B. Ricceri,
A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.
doi: 10.1016/S0377-0427(99)00269-1. |
[7] |
R. Stegliński,,
On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp.
doi: 10.1186/s13662-017-1344-6. |
[8] |
R. Stegliński,
On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.
|
[9] |
G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages.
doi: 10.1155/2014/276372. |
show all references
References:
[1] |
G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,
Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp. |
[2] |
A. Iannizzotto and S. Tersian,
Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182.
doi: 10.1016/j.jmaa.2013.02.011. |
[3] |
L. Kong,
Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121.
doi: 10.1016/j.amc.2014.09.069. |
[4] |
L. Kong,
Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146.
doi: 10.1016/j.indag.2015.08.007. |
[5] |
S. Liu,
On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
doi: 10.1016/j.na.2010.04.016. |
[6] |
B. Ricceri,
A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410.
doi: 10.1016/S0377-0427(99)00269-1. |
[7] |
R. Stegliński,,
On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp.
doi: 10.1186/s13662-017-1344-6. |
[8] |
R. Stegliński,
On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.
|
[9] |
G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages.
doi: 10.1155/2014/276372. |
[1] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51 |
[2] |
Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 |
[3] |
Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015 |
[4] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058 |
[5] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 |
[6] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[7] |
Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593 |
[8] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060 |
[9] |
John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533 |
[10] |
Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025 |
[11] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[12] |
Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133 |
[13] |
Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure and Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 |
[14] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[15] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[16] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1121-1147. doi: 10.3934/dcdsb.2021083 |
[17] |
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 |
[18] |
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 |
[19] |
Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 |
[20] |
Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]