March  2018, 23(2): 573-585. doi: 10.3934/dcdsb.2018034

High order Gauss-Seidel schemes for charged particle dynamics

1. 

College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. 

School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China

3. 

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

* Corresponding author:wangyushun@njnu.edu.cn(Y. Wang)

Received  October 2015 Revised  July 2017 Published  December 2017

Gauss-Seidel projection methods are designed for achieving desirable long-term computational efficiency and reliability in micromagnetics simulations. While conventional Gauss-Seidel schemes are explicit, easy to use and furnish a better stability as compared to Euler's method, their order of accuracy is only one. This paper proposes an improved Gauss-Seidel methodology for particle simulations of magnetized plasmas. A novel new class of high order schemes are implemented via composition strategies. The new algorithms acquired are not only explicit and symmetric, but also volume-preserving together with their adjoint schemes. They are highly favorable for long-term computations. The new high order schemes are then utilized for simulating charged particle motions under the Lorentz force. Our experiments indicate a remarkable satisfaction of the energy preservation and angular momentum conservation of the numerical methods in multi-scale plasma dynamics computations.

Citation: Yuezheng Gong, Jiaquan Gao, Yushun Wang. High order Gauss-Seidel schemes for charged particle dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 573-585. doi: 10.3934/dcdsb.2018034
References:
[1]

P. M. Bellan, Fundamentals of Plasma Physics, 1$^{st}$ edition, Cambridge University Press, 2008. doi: 10.1017/CBO9780511807183.  Google Scholar

[2]

C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Ser. Plasma Phys. Taylor & Francis, 2005. Google Scholar

[3]

J. Boris, Proceedings of the fourth conference on numerical simulation of plasmas, Washington D.C., (1970), 3-67.   Google Scholar

[4]

S. A. Chin, Symplectic and energy-conserving algorithms for solving magnetic field trajectories, Phy. Rev. E, 77 (2008), 066401, 12pp.  Google Scholar

[5]

W. N. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38 (2000), 1647-1665.  doi: 10.1137/S0036142999352199.  Google Scholar

[6]

K. Feng, Symplectic, contact and volume-preserving algorithms, in: Z. C. Shi, T. Ushijima (Eds. ), Proc. 1st China-Japan Conf. on Computation of Differential Equations and Dynamical Systems, World Scientific, Singapore, 1993, 1–28. Google Scholar

[7]

K. Feng and Z. Shang, Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995), 451-463.  doi: 10.1007/s002110050153.  Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

Y. HeY. J. SunJ. Liu and H. Qin, Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281 (2015), 135-147.  doi: 10.1016/j.jcp.2014.10.032.  Google Scholar

[10]

Y. HeZ. ZhouY. SunJ. Liu and H. Qin, Explicit $K$-symplectic algorithms for charged particle dynamics, Phys. Lett. A, 381 (2017), 568-573.  doi: 10.1016/j.physleta.2016.12.031.  Google Scholar

[11]

R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids, 24 (1981), 1730-1749.  doi: 10.1063/1.863594.  Google Scholar

[12]

R. G. Littlejohn, Variational principles of guiding centre motion, J. Plasma Phys., 29 (1983), 111-125.  doi: 10.1017/S002237780000060X.  Google Scholar

[13]

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge: Cambridge University Press, 2004.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, Berlin, 1999.  Google Scholar

[15]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[16]

H. Qin, S. X. Zhang, J. Y. Xiao, J. Liu, Y. J. Sun and W. M. Tang, Why is Boris algorithm so good?, Phys. Plasmas, 20 (2013), 084503. doi: 10.1063/1.4818428.  Google Scholar

[17]

H. Qin and X. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Phys. Rev. Lett. , 100 (2008), 035006. doi: 10.1103/PhysRevLett.100.035006.  Google Scholar

[18]

Z. Shang, Construction of volume-preserving difference schemes for source-free systems via generating functions, J. Comput. Math., 12 (1994), 265-272.   Google Scholar

[19]

P. H. Stoltz, J. R. Cary, G. Penn and J. Wurtele, Efficiency of a Boris like integration scheme with spatial stepping, Phys. Rev. Spec. Top. Accel. Beams, 5 (2002), 094001. doi: 10.1103/PhysRevSTAB.5.094001.  Google Scholar

[20]

Y. Sun, A class of volume-preserving numerical algorithms, Appl. Math. Comput., 206 (2008), 841-852.  doi: 10.1016/j.amc.2008.10.004.  Google Scholar

[21]

X. P. WangC. J. Garcia-Cervera and W. N. E, A Gauss-Seidel Projection Method for Micromagnetics Simulations, J. Comput. Phys., 171 (2001), 357-372.  doi: 10.1006/jcph.2001.6793.  Google Scholar

[22]

S. D. Webb, Symplectic intergration of magnetic systems, J. Comput. Phys., 270 (2014), 570-576.  doi: 10.1016/j.jcp.2014.03.049.  Google Scholar

[23]

Y. K. Wu, E. Forest and D. S. Robin, Explicit symplectic integrator for s-dependent static magnetic field, Phys. Rev. E, 68 (2003), 046502. doi: 10.1103/PhysRevE.68.046502.  Google Scholar

[24]

S. X. ZhangY. S. Jia and Q. Z. Sun, Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570-576], J. Comput. Phys., 282 (2015), 43-46.  doi: 10.1016/j.jcp.2014.10.062.  Google Scholar

show all references

References:
[1]

P. M. Bellan, Fundamentals of Plasma Physics, 1$^{st}$ edition, Cambridge University Press, 2008. doi: 10.1017/CBO9780511807183.  Google Scholar

[2]

C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Ser. Plasma Phys. Taylor & Francis, 2005. Google Scholar

[3]

J. Boris, Proceedings of the fourth conference on numerical simulation of plasmas, Washington D.C., (1970), 3-67.   Google Scholar

[4]

S. A. Chin, Symplectic and energy-conserving algorithms for solving magnetic field trajectories, Phy. Rev. E, 77 (2008), 066401, 12pp.  Google Scholar

[5]

W. N. E and X. P. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38 (2000), 1647-1665.  doi: 10.1137/S0036142999352199.  Google Scholar

[6]

K. Feng, Symplectic, contact and volume-preserving algorithms, in: Z. C. Shi, T. Ushijima (Eds. ), Proc. 1st China-Japan Conf. on Computation of Differential Equations and Dynamical Systems, World Scientific, Singapore, 1993, 1–28. Google Scholar

[7]

K. Feng and Z. Shang, Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995), 451-463.  doi: 10.1007/s002110050153.  Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

Y. HeY. J. SunJ. Liu and H. Qin, Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281 (2015), 135-147.  doi: 10.1016/j.jcp.2014.10.032.  Google Scholar

[10]

Y. HeZ. ZhouY. SunJ. Liu and H. Qin, Explicit $K$-symplectic algorithms for charged particle dynamics, Phys. Lett. A, 381 (2017), 568-573.  doi: 10.1016/j.physleta.2016.12.031.  Google Scholar

[11]

R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids, 24 (1981), 1730-1749.  doi: 10.1063/1.863594.  Google Scholar

[12]

R. G. Littlejohn, Variational principles of guiding centre motion, J. Plasma Phys., 29 (1983), 111-125.  doi: 10.1017/S002237780000060X.  Google Scholar

[13]

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge: Cambridge University Press, 2004.  Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, Berlin, 1999.  Google Scholar

[15]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[16]

H. Qin, S. X. Zhang, J. Y. Xiao, J. Liu, Y. J. Sun and W. M. Tang, Why is Boris algorithm so good?, Phys. Plasmas, 20 (2013), 084503. doi: 10.1063/1.4818428.  Google Scholar

[17]

H. Qin and X. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields, Phys. Rev. Lett. , 100 (2008), 035006. doi: 10.1103/PhysRevLett.100.035006.  Google Scholar

[18]

Z. Shang, Construction of volume-preserving difference schemes for source-free systems via generating functions, J. Comput. Math., 12 (1994), 265-272.   Google Scholar

[19]

P. H. Stoltz, J. R. Cary, G. Penn and J. Wurtele, Efficiency of a Boris like integration scheme with spatial stepping, Phys. Rev. Spec. Top. Accel. Beams, 5 (2002), 094001. doi: 10.1103/PhysRevSTAB.5.094001.  Google Scholar

[20]

Y. Sun, A class of volume-preserving numerical algorithms, Appl. Math. Comput., 206 (2008), 841-852.  doi: 10.1016/j.amc.2008.10.004.  Google Scholar

[21]

X. P. WangC. J. Garcia-Cervera and W. N. E, A Gauss-Seidel Projection Method for Micromagnetics Simulations, J. Comput. Phys., 171 (2001), 357-372.  doi: 10.1006/jcph.2001.6793.  Google Scholar

[22]

S. D. Webb, Symplectic intergration of magnetic systems, J. Comput. Phys., 270 (2014), 570-576.  doi: 10.1016/j.jcp.2014.03.049.  Google Scholar

[23]

Y. K. Wu, E. Forest and D. S. Robin, Explicit symplectic integrator for s-dependent static magnetic field, Phys. Rev. E, 68 (2003), 046502. doi: 10.1103/PhysRevE.68.046502.  Google Scholar

[24]

S. X. ZhangY. S. Jia and Q. Z. Sun, Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570-576], J. Comput. Phys., 282 (2015), 43-46.  doi: 10.1016/j.jcp.2014.10.062.  Google Scholar

Figure 1.  The fourth order explicit method $RK4$ is applied to the simple 2D dynamics with step size $h = \pi/10$. (a): The orbit in the first $2691$ steps. (b): The orbit after $2.7\times10^{5}$ steps. (c): Energy error $H^{n}-H^{0}$. (d): Angular momentum error $p_{\xi}^{n}-p_{\xi}^{0}$
Figure 2.  Numerical orbits of the symmetric and volume-preserving methods with time step $h = \pi/10$. (a): The orbit after $5\times10^{5}$ steps by the second order method. (b): The orbit after $2.5\times10^{5}$ steps by the fourth order method
Figure 3.  Convergence rates of numerical solutions by the methods $GS_{h}^{2}$, $\tilde{G}_{h}^{2}$, $GS_{h}^{4}$ and $G_{h}^{4}$
Figure 4.  Left: The errors of the energy. Right: The errors of the angular momentum
Figure 5.  Relative errors of the energy $H$ and the angular momentum $p_{\xi}$ as a function of time $t\equiv nh$. The step size is $h = \pi/10$, and the integration time interval is $[0, 10^{5}h]$
Figure 6.  Numerical orbits. (a): Banana orbit by the $RK4$. (b): Transit orbit by the $RK4$. (c): Banana orbit by the volume-preserving methods. (d): Transit orbit by the volume-preserving methods. The step size is $h = \pi/10$, and the integration time interval is $[0, 5\times10^{5}h]$
Figure 7.  Relative errors of the energy $H$ and the angular momentum $p_{\xi}$ as a function of time $t\equiv nh$. The step size is $h = \pi/10$, and the integration time interval is $[0, 5\times10^{5}h]$
[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (126)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]