Gauss-Seidel projection methods are designed for achieving desirable long-term computational efficiency and reliability in micromagnetics simulations. While conventional Gauss-Seidel schemes are explicit, easy to use and furnish a better stability as compared to Euler's method, their order of accuracy is only one. This paper proposes an improved Gauss-Seidel methodology for particle simulations of magnetized plasmas. A novel new class of high order schemes are implemented via composition strategies. The new algorithms acquired are not only explicit and symmetric, but also volume-preserving together with their adjoint schemes. They are highly favorable for long-term computations. The new high order schemes are then utilized for simulating charged particle motions under the Lorentz force. Our experiments indicate a remarkable satisfaction of the energy preservation and angular momentum conservation of the numerical methods in multi-scale plasma dynamics computations.
Citation: |
P. M. Bellan,
Fundamentals of Plasma Physics, 1$^{st}$ edition, Cambridge University Press, 2008.
doi: 10.1017/CBO9780511807183.![]() ![]() |
|
C. K. Birdsall and A. B. Langdon,
Plasma Physics via Computer Simulation, Ser. Plasma Phys. Taylor & Francis, 2005.
![]() |
|
J. Boris
, Proceedings of the fourth conference on numerical simulation of plasmas, Washington D.C., (1970)
, 3-67.
![]() |
|
S. A. Chin, Symplectic and energy-conserving algorithms for solving magnetic field trajectories,
Phy. Rev. E, 77 (2008), 066401, 12pp.
![]() ![]() |
|
W. N. E
and X. P. Wang
, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38 (2000)
, 1647-1665.
doi: 10.1137/S0036142999352199.![]() ![]() ![]() |
|
K. Feng, Symplectic, contact and volume-preserving algorithms, in: Z. C. Shi, T. Ushijima
(Eds. ), Proc. 1st China-Japan Conf. on Computation of Differential Equations and Dynamical Systems, World Scientific, Singapore, 1993, 1–28.
![]() |
|
K. Feng
and Z. Shang
, Volume-preserving algorithms for source-free dynamical systems, Numer. Math., 71 (1995)
, 451-463.
doi: 10.1007/s002110050153.![]() ![]() ![]() |
|
E. Hairer, C. Lubich and G. Wanner,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006.
![]() ![]() |
|
Y. He
, Y. J. Sun
, J. Liu
and H. Qin
, Volume-preserving algorithms for charged particle dynamics, J. Comput. Phys., 281 (2015)
, 135-147.
doi: 10.1016/j.jcp.2014.10.032.![]() ![]() ![]() |
|
Y. He
, Z. Zhou
, Y. Sun
, J. Liu
and H. Qin
, Explicit $K$-symplectic algorithms for charged particle dynamics, Phys. Lett. A, 381 (2017)
, 568-573.
doi: 10.1016/j.physleta.2016.12.031.![]() ![]() ![]() |
|
R. G. Littlejohn
, Hamiltonian formulation of guiding center motion, Phys. Fluids, 24 (1981)
, 1730-1749.
doi: 10.1063/1.863594.![]() ![]() ![]() |
|
R. G. Littlejohn
, Variational principles of guiding centre motion, J. Plasma Phys., 29 (1983)
, 111-125.
doi: 10.1017/S002237780000060X.![]() ![]() |
|
B. Leimkuhler and S. Reich,
Simulating Hamiltonian Dynamics, Cambridge: Cambridge University Press, 2004.
![]() ![]() |
|
J. E. Marsden and T. S. Ratiu,
Introduction to Mechanics and Symmetry, Springer-Verlag, Berlin, 1999.
![]() ![]() |
|
J. E. Marsden
and M. West
, Discrete mechanics and variational integrators, Acta Numer., 10 (2001)
, 357-514.
doi: 10.1017/S096249290100006X.![]() ![]() ![]() |
|
H. Qin, S. X. Zhang, J. Y. Xiao, J. Liu, Y. J. Sun and W. M. Tang, Why is Boris algorithm so good?,
Phys. Plasmas, 20 (2013), 084503.
doi: 10.1063/1.4818428.![]() ![]() |
|
H. Qin and X. Guan, Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields,
Phys. Rev. Lett. , 100 (2008), 035006.
doi: 10.1103/PhysRevLett.100.035006.![]() ![]() |
|
Z. Shang
, Construction of volume-preserving difference schemes for source-free systems via generating functions, J. Comput. Math., 12 (1994)
, 265-272.
![]() ![]() |
|
P. H. Stoltz, J. R. Cary, G. Penn and J. Wurtele, Efficiency of a Boris like integration scheme with spatial stepping,
Phys. Rev. Spec. Top. Accel. Beams, 5 (2002), 094001.
doi: 10.1103/PhysRevSTAB.5.094001.![]() ![]() |
|
Y. Sun
, A class of volume-preserving numerical algorithms, Appl. Math. Comput., 206 (2008)
, 841-852.
doi: 10.1016/j.amc.2008.10.004.![]() ![]() ![]() |
|
X. P. Wang
, C. J. Garcia-Cervera
and W. N. E
, A Gauss-Seidel Projection Method for Micromagnetics Simulations, J. Comput. Phys., 171 (2001)
, 357-372.
doi: 10.1006/jcph.2001.6793.![]() ![]() ![]() |
|
S. D. Webb
, Symplectic intergration of magnetic systems, J. Comput. Phys., 270 (2014)
, 570-576.
doi: 10.1016/j.jcp.2014.03.049.![]() ![]() ![]() |
|
Y. K. Wu, E. Forest and D. S. Robin, Explicit symplectic integrator for s-dependent static magnetic field,
Phys. Rev. E, 68 (2003), 046502.
doi: 10.1103/PhysRevE.68.046502.![]() ![]() |
|
S. X. Zhang
, Y. S. Jia
and Q. Z. Sun
, Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270 (2014) 570-576], J. Comput. Phys., 282 (2015)
, 43-46.
doi: 10.1016/j.jcp.2014.10.062.![]() ![]() ![]() |
The fourth order explicit method
Numerical orbits of the symmetric and volume-preserving methods with time step
Convergence rates of numerical solutions by the methods
Left: The errors of the energy. Right: The errors of the angular momentum
Relative errors of the energy
Numerical orbits. (a): Banana orbit by the
Relative errors of the energy