This paper is concerned with the traveling waves of a nonlocal dispersal Lotka-Volterra strong competition model with bistable nonlinearity. We first establish the asymptotic behavior of traveling waves at infinity. Then by applying the stronger comparison principle and the sliding method, we prove that the traveling waves with nonzero speed are strictly monotone. Moreover, the uniqueness of wave speeds is also obtained.
Citation: |
P. W. Bates
, P. C. Fife
, X. Ren
and X. Wang
, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997)
, 105-136.
doi: 10.1007/s002050050037.![]() ![]() ![]() |
|
J. Carr
and A. Chmaj
, Uniqueness of travelling waves of nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004)
, 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5.![]() ![]() ![]() |
|
E. Chasseigne
, M. Chaves
and J. D. Rossi
, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pure Appl., 86 (2006)
, 271-291.
doi: 10.1016/j.matpur.2006.04.005.![]() ![]() ![]() |
|
X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125–160. http://projecteuclid.org/euclid.ade/1366809230
![]() ![]() |
|
J. Coville
and L. Dupaigne
, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect.A, 137 (2007)
, 727-755.
doi: 10.1017/S0308210504000721.![]() ![]() ![]() |
|
J. Coville
, J. Dávila
and S. Martínez
, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008)
, 3080-3118.
doi: 10.1016/j.jde.2007.11.002.![]() ![]() ![]() |
|
J. Fang
and X. Q. Zhao
, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014)
, 3678-3704.
doi: 10.1137/140953939.![]() ![]() ![]() |
|
P. Fife, Some nonclassical trends in parabolic-like evolutions, in Trends in Nonlinear Analysis,
Springer, Berlin, (2003), 153–191.
![]() ![]() |
|
J.-S. Guo
and X. Liang
, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011)
, 353-363.
doi: 10.1007/s10884-011-9214-5.![]() ![]() ![]() |
|
J.-S. Guo
and C.-H. Wu
, Wave propagation for a two-component lattice dynamical system arising in strong competition models, J. Differential Equations, 250 (2011)
, 3504-3533.
doi: 10.1016/j.jde.2010.12.004.![]() ![]() ![]() |
|
J.-S. Guo
and C.-H. Wu
, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012)
, 4357-4391.
doi: 10.1016/j.jde.2012.01.009.![]() ![]() ![]() |
|
J.-S. Guo
and C.-H. Wu
, Recent developments on wave propagation in 2-species competition systems, Discrete Continuous Dynam. Systems -B, 17 (2012)
, 2713-2724.
doi: 10.3934/dcdsb.2012.17.2713.![]() ![]() ![]() |
|
G. Hetzer
, T. Nguyen
and W. Shen
, Coexistence and extinction in the Volterrra-Lotka competition model with nonlocal dispersal, Commu. Pure Appl. Anal., 11 (2012)
, 1699-1722.
doi: 10.3934/cpaa.2012.11.1699.![]() ![]() ![]() |
|
Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra
competitive models, in "Numerical and Applied Mathematic, Part Ⅱ" (Paris, 1988), IMACS
Ann. Comput. Appl. Math., 1. 2, Baltzer, Basel, (1989), 687–692.
![]() ![]() |
|
Y. Hosono
, The minimal speed of traveling fronts for a diffusion Lotka-Volterra competition model, Bulletin of Math. Biology, 60 (1998)
, 435-448.
doi: 10.1006/bulm.1997.0008.![]() ![]() |
|
X. Hou
, B. Wang
and Z. C. Zhang
, The mutual inclusion in a nonlocal competitive Lotka Volterra system, Japan J. Indust. Appl. Math., 31 (2014)
, 87-110.
doi: 10.1007/s13160-013-0126-0.![]() ![]() ![]() |
|
V. Hutson
, S. Martinez
, K. Mischaikow
and G. T. Vickers
, The evolution of dispersal, J. Math. Biology, 47 (2003)
, 483-517.
doi: 10.1007/s00285-003-0210-1.![]() ![]() ![]() |
|
Y. Kan-on
, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997)
, 145-164.
doi: 10.1016/0362-546X(95)00142-I.![]() ![]() ![]() |
|
X.-S. Li
and G. Lin
, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008)
, 738-744.
doi: 10.1016/j.amc.2008.07.016.![]() ![]() ![]() |
|
W.-T. Li
, L. Zhang
and G.-B. Zhang
, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Continuous Dynam. Systems, 35 (2015)
, 1531-1560.
doi: 10.3934/dcds.2015.35.1531.![]() ![]() ![]() |
|
G. Lin
and W. T. Li
, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differential Equations, 224 (2008)
, 487-513.
doi: 10.1016/j.jde.2007.10.019.![]() ![]() ![]() |
|
J. Murray,
Mathematical Biology, 3 $^{nd}$, Springer, Berlin-Heidelberg, New York, 2003.
![]() ![]() |
|
S. Pan
, W. T. Li
and G. Lin
, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009)
, 377-392.
doi: 10.1007/s00033-007-7005-y.![]() ![]() ![]() |
|
S. Pan
and G. Lin
, Invasion traveling wave solutions of a competitive system with dispersal, Bound. Value Probl., 2012 (2012)
, 1-11.
doi: 10.1186/1687-2770-2012-120.![]() ![]() ![]() |
|
Y.-J. Sun
, W.-T. Li
and Z.-C. Wang
, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011)
, 551-581.
doi: 10.1016/j.jde.2011.04.020.![]() ![]() ![]() |
|
Y.-J. Sun
, W.-T. Li
and Z.-C. Wang
, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011)
, 814-826.
doi: 10.1016/j.na.2010.09.032.![]() ![]() ![]() |
|
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Travelling Wave Solutions of Parabolic Sysytems Translation of Mathematical Monographs, Vol. 140, Amer. Math. Soc., Priovidence, 1994.
![]() ![]() |
|
C.-C. Wu
, Existence of traveling wavefront for discrete bistable competition model, Discrete Continuous Dynam. Systems -B, 16 (2011)
, 973-984.
doi: 10.3934/dcdsb.2011.16.973.![]() ![]() ![]() |
|
Z.-X. Yu
and R. Yuan
, Existence of traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 51 (2009)
, 49-66.
doi: 10.1017/S1446181109000406.![]() ![]() ![]() |
|
G.-B. Zhang
, W.-T. Li
and G. Lin
, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Model., 49 (2009)
, 1021-1029.
doi: 10.1016/j.mcm.2008.09.007.![]() ![]() ![]() |
|
G.-B. Zhang
, Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 74 (2011)
, 5030-5047.
doi: 10.1016/j.na.2011.04.069.![]() ![]() ![]() |
|
G.-B. Zhang
, W.-T. Li
and Z.-C. Wang
, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012)
, 5096-5124.
doi: 10.1016/j.jde.2012.01.014.![]() ![]() ![]() |
|
L. Zhang
and B. Li
, Traveling wave solutions in an integro-differential competition model, Discrete Continuous Dynam. Systems -B, 17 (2012)
, 417-428.
doi: 10.3934/dcdsb.2012.17.417.![]() ![]() ![]() |