
-
Previous Article
Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction
- DCDS-B Home
- This Issue
-
Next Article
Global Hopf bifurcations of neutral functional differential equations with state-dependent delay
Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps
1. | Department of Economics, Society and Politics, University of Urbino, via Saffi 42,61029 Urbino (PU), Italy |
2. | Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, Azadi St., Tehran, P.O.Box 11365-11155, Iran |
3. | Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska st., 01601 Kyiv, Ukraine |
We investigate the dynamics of a family of one-dimensional linear-power maps. This family has been studied by many authors mainly in the continuous case, associated with Nordmark systems. In the discontinuous case, which is much less studied, the map has vertical and horizontal asymptotes giving rise to new kinds of border collision bifurcations. We explain a mechanism of the interplay between smooth bifurcations and border collision bifurcations with singularity, leading to peculiar sequences of attracting cycles of periods $n,2n$, $4n-1$, $2(4n-1)$, ..., $n≥3$. We show also that the transition from invertible to noninvertible map may lead abruptly to chaos, and the role of organizing center in the parameter space is played by a particular bifurcation point related to this transition and to a flip bifurcation. Robust unbounded chaotic attractors characteristic for certain parameter ranges are also described. We provide proofs of some properties of the considered map. However, the complete description of its rich bifurcation structure is still an open problem.
References:
[1] |
F. Angulo and M. di Bernardo,
Feedback control of limit cycles: A switching control strategy based on nonsmooth bifurcation theory, IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378.
doi: 10.1109/TCSI.2004.841595. |
[2] |
V. Avrutin, I. Sushko and L. Gardini,
Cyclicity of chaotic attractors in one-dimensional discontinuous maps, Mathematics and Computers in Simulation, 95 (2014), 126-136.
doi: 10.1016/j.matcom.2012.07.019. |
[3] |
V. Avrutin, P. S. Dutta, M. Schanz and S. Banerjee,
Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23 (2010), 445-463.
doi: 10.1088/0951-7715/23/2/012. |
[4] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences 163, Springer-Verlag, London, 2008. |
[5] |
M. di Bernardo, C. Budd and A. Champneys,
Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the dc-dc buck converter, Nonlinearity, 11 (1998), 859-890.
doi: 10.1088/0951-7715/11/4/007. |
[6] |
M. di Bernardo, C. J. Budd and A. R. Champneys,
Corner collision implies border-collision bifurcation, Physica D, 154 (2001), 171-194.
doi: 10.1016/S0167-2789(01)00250-0. |
[7] |
M. di Bernardo, P. Kowalczyk and A. B. Nordmark,
Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205.
doi: 10.1016/S0167-2789(02)00547-X. |
[8] |
G.I. Bischi, C. Mira and L. Gardini,
Unbounded sets of attraction, International Journal of Bifurcation and Chaos, 10 (2000), 1437-1469.
doi: 10.1142/S0218127400000980. |
[9] |
H. Dankowicz and A. B. Nordmark,
On the origin and bifurcations of stick-slip oscillations, Physica D, 136 (2000), 280-302.
doi: 10.1016/S0167-2789(99)00161-X. |
[10] |
L. Gardini, I. Sushko, V. Avrutin and M. Schanz,
Critical homoclinic orbits lead to snap-back repellers, Chaos Solitons Fractals, 44 (2011), 433-449.
doi: 10.1016/j.chaos.2011.03.004. |
[11] |
C. Halse, M. Homer and M. di Bernardo,
C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18 (2003), 953-976.
doi: 10.1016/S0960-0779(03)00066-3. |
[12] |
M. Jakobson,
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun Math Phys, 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[13] |
A. Kumar, S. Banerjee and D. P. Lathrop,
Dynamics of a piecewise smooth map with singularity, Physics Letters A, 337 (2005), 87-92.
doi: 10.1016/j.physleta.2005.01.046. |
[14] |
Y. L. Maistrenko, V. L. Maistrenko and L. O. Chua,
Cycles of chaotic intervals in a time-delayed Chua's circuit, Int. J. Bifurcat. Chaos, 3 (1993), 1557-1572.
doi: 10.1142/S0218127493001215. |
[15] |
R. Makrooni and L. Gardini, Bifurcation Structures in a Family of One-Dimensional LinearPower Discontinuous Maps, Gecomplexity Discussion Paper N. 7,2015, ISSN: 2409–7497. http://econpapers.repec.org/paper/cstwpaper/ |
[16] |
R. Makrooni, N. Abbasi, M. Pourbarat and L. Gardini,
Robust unbounded chaotic attractors in 1D discontinuous maps, Chaos, Solitons Fractals, 77 (2015), 310-318.
doi: 10.1016/j.chaos.2015.06.012. |
[17] |
R. Makrooni, F. Khellat and L. Gardini,
Border collision and fold bifurcations in a family of piecesiwe smooth maps. Part Ⅰ: Unbounded chaotic sets, J. Difference Equ. Appl., 21 (2015), 660-695.
doi: 10.1080/10236198.2015.1045893. |
[18] |
R. Makrooni, F. Khellat and L. Gardini,
Border collision and fold bifurcations in a family of piecesiwe smooth maps: divergence and bounded dynamics, J. Difference Equ. Appl., 21 (2015), 791-824.
doi: 10.1080/10236198.2015.1046855. |
[19] |
R. Makrooni, L. Gardini and I. Sushko,
Bifurcation structures in a family of 1D discontinuos linear-hyperbolic invertible maps, Int. J. Bifurcation and Chaos, 25 (2015), 1530039 (21 pages).
doi: 10.1142/S0218127415300396. |
[20] |
N. Metropolis, M. L. Stein and P. R. Stein,
On finite limit sets for transformations on the unit interval, J Comb Theory, 15 (1973), 25-44.
doi: 10.1016/0097-3165(73)90033-2. |
[21] |
A. B. Nordmark,
Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297.
doi: 10.1016/0022-460X(91)90592-8. |
[22] |
A. B. Nordmark,
Universal limit mapping in grazing bifurcations, Physical Review E, 55 (1997), 266-270.
doi: 10.1103/PhysRevE.55.266. |
[23] |
A. B. Nordmark,
Existence of priodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542.
doi: 10.1088/0951-7715/14/6/306. |
[24] |
H. E. Nusse and J. A. Yorke,
Border-collision bifurcations including period two to period three for piecewise smooth systems, Physica D, 57 (1992), 39-57.
doi: 10.1016/0167-2789(92)90087-4. |
[25] |
H. E. Nusse and J. A. Yorke,
Border-collision bifurcation for piecewise smooth one-dimensional maps, Int. J. Bifurcation Chaos, 5 (1995), 189-207.
doi: 10.1142/S0218127495000156. |
[26] |
H. Nusse, E. Ott and J. Yorke,
Border collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994), 1073-1076.
doi: 10.1103/PhysRevE.49.1073. |
[27] |
Z. Qin, J. Yang, S. Banerjee and G. Jiang,
Border collision bifurcations in a generalized piecewise linear-power map, Discrete and Continuous Dynamical System, Series B, 16 (2011), 547-567.
doi: 10.3934/dcdsb.2011.16.547. |
[28] |
Z. Qin, Z. Yuejing, J. Yang and Y. Jichen,
Nonsmooth and smooth bifurcations in a discontinuous piecewise map, Int. J. Bifurcation and Chaos, 22 (2012), 1250112 (7 pages).
doi: 10.1142/S021812741250112X. |
[29] |
W. T. Shi, C. L. Gooderidge and D. P. Lathrop,
Viscous effects in droplet-ejecting capillary waves, Phys. Rev. E, 56 (1997), 41-57.
|
[30] |
I. Sushko, A. Agliari and L. Gardini,
Bistability and bifurcation curves for a unimodal piecewise smooth map, Discrete and Continuous Dynamical Systems, Serie B, 5 (2005), 881-897.
doi: 10.3934/dcdsb.2005.5.881. |
[31] |
I. Sushko, A. Agliari and L. Gardini,
Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves, Chaos Solitons Fractals, 29 (2006), 756-770.
doi: 10.1016/j.chaos.2005.08.107. |
[32] |
I. Sushko and L. Gardini,
Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps, Int. J. Bif. and Chaos, 20 (2010), 2045-2070.
doi: 10.1142/S0218127410026927. |
[33] |
I. Sushko, L. Gardini and K. Matsuyama,
Superstable credit cycles and U-sequence, Chaos Solitons Fractals, 59 (2014), 13-27.
doi: 10.1016/j.chaos.2013.11.006. |
[34] |
I. Sushko, V. Avrutin and L. Gardini,
Bifurcation structure in the skew tent map and its application as a border collision normal form, Journal of Difference Equations and Applications, 22 (2016), 582-629.
doi: 10.1080/10236198.2015.1113273. |
[35] |
H. Thunberg,
Periodicity versus chaos in one-dimensional dynamics, SIAM Rev, 43 (2001), 3-30.
doi: 10.1137/S0036144500376649. |
[36] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, SpringerVerlag, New York, 2003. |
show all references
References:
[1] |
F. Angulo and M. di Bernardo,
Feedback control of limit cycles: A switching control strategy based on nonsmooth bifurcation theory, IEEE Transactions on Circuits and Systems-I, 52 (2005), 366-378.
doi: 10.1109/TCSI.2004.841595. |
[2] |
V. Avrutin, I. Sushko and L. Gardini,
Cyclicity of chaotic attractors in one-dimensional discontinuous maps, Mathematics and Computers in Simulation, 95 (2014), 126-136.
doi: 10.1016/j.matcom.2012.07.019. |
[3] |
V. Avrutin, P. S. Dutta, M. Schanz and S. Banerjee,
Influence of a square-root singularity on the behaviour of piecewise smooth maps, Nonlinearity, 23 (2010), 445-463.
doi: 10.1088/0951-7715/23/2/012. |
[4] |
M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences 163, Springer-Verlag, London, 2008. |
[5] |
M. di Bernardo, C. Budd and A. Champneys,
Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the dc-dc buck converter, Nonlinearity, 11 (1998), 859-890.
doi: 10.1088/0951-7715/11/4/007. |
[6] |
M. di Bernardo, C. J. Budd and A. R. Champneys,
Corner collision implies border-collision bifurcation, Physica D, 154 (2001), 171-194.
doi: 10.1016/S0167-2789(01)00250-0. |
[7] |
M. di Bernardo, P. Kowalczyk and A. B. Nordmark,
Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205.
doi: 10.1016/S0167-2789(02)00547-X. |
[8] |
G.I. Bischi, C. Mira and L. Gardini,
Unbounded sets of attraction, International Journal of Bifurcation and Chaos, 10 (2000), 1437-1469.
doi: 10.1142/S0218127400000980. |
[9] |
H. Dankowicz and A. B. Nordmark,
On the origin and bifurcations of stick-slip oscillations, Physica D, 136 (2000), 280-302.
doi: 10.1016/S0167-2789(99)00161-X. |
[10] |
L. Gardini, I. Sushko, V. Avrutin and M. Schanz,
Critical homoclinic orbits lead to snap-back repellers, Chaos Solitons Fractals, 44 (2011), 433-449.
doi: 10.1016/j.chaos.2011.03.004. |
[11] |
C. Halse, M. Homer and M. di Bernardo,
C-bifurcations and period-adding in one-dimensional piecewise-smooth maps, Chaos, Solitons Fractals, 18 (2003), 953-976.
doi: 10.1016/S0960-0779(03)00066-3. |
[12] |
M. Jakobson,
Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun Math Phys, 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[13] |
A. Kumar, S. Banerjee and D. P. Lathrop,
Dynamics of a piecewise smooth map with singularity, Physics Letters A, 337 (2005), 87-92.
doi: 10.1016/j.physleta.2005.01.046. |
[14] |
Y. L. Maistrenko, V. L. Maistrenko and L. O. Chua,
Cycles of chaotic intervals in a time-delayed Chua's circuit, Int. J. Bifurcat. Chaos, 3 (1993), 1557-1572.
doi: 10.1142/S0218127493001215. |
[15] |
R. Makrooni and L. Gardini, Bifurcation Structures in a Family of One-Dimensional LinearPower Discontinuous Maps, Gecomplexity Discussion Paper N. 7,2015, ISSN: 2409–7497. http://econpapers.repec.org/paper/cstwpaper/ |
[16] |
R. Makrooni, N. Abbasi, M. Pourbarat and L. Gardini,
Robust unbounded chaotic attractors in 1D discontinuous maps, Chaos, Solitons Fractals, 77 (2015), 310-318.
doi: 10.1016/j.chaos.2015.06.012. |
[17] |
R. Makrooni, F. Khellat and L. Gardini,
Border collision and fold bifurcations in a family of piecesiwe smooth maps. Part Ⅰ: Unbounded chaotic sets, J. Difference Equ. Appl., 21 (2015), 660-695.
doi: 10.1080/10236198.2015.1045893. |
[18] |
R. Makrooni, F. Khellat and L. Gardini,
Border collision and fold bifurcations in a family of piecesiwe smooth maps: divergence and bounded dynamics, J. Difference Equ. Appl., 21 (2015), 791-824.
doi: 10.1080/10236198.2015.1046855. |
[19] |
R. Makrooni, L. Gardini and I. Sushko,
Bifurcation structures in a family of 1D discontinuos linear-hyperbolic invertible maps, Int. J. Bifurcation and Chaos, 25 (2015), 1530039 (21 pages).
doi: 10.1142/S0218127415300396. |
[20] |
N. Metropolis, M. L. Stein and P. R. Stein,
On finite limit sets for transformations on the unit interval, J Comb Theory, 15 (1973), 25-44.
doi: 10.1016/0097-3165(73)90033-2. |
[21] |
A. B. Nordmark,
Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297.
doi: 10.1016/0022-460X(91)90592-8. |
[22] |
A. B. Nordmark,
Universal limit mapping in grazing bifurcations, Physical Review E, 55 (1997), 266-270.
doi: 10.1103/PhysRevE.55.266. |
[23] |
A. B. Nordmark,
Existence of priodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542.
doi: 10.1088/0951-7715/14/6/306. |
[24] |
H. E. Nusse and J. A. Yorke,
Border-collision bifurcations including period two to period three for piecewise smooth systems, Physica D, 57 (1992), 39-57.
doi: 10.1016/0167-2789(92)90087-4. |
[25] |
H. E. Nusse and J. A. Yorke,
Border-collision bifurcation for piecewise smooth one-dimensional maps, Int. J. Bifurcation Chaos, 5 (1995), 189-207.
doi: 10.1142/S0218127495000156. |
[26] |
H. Nusse, E. Ott and J. Yorke,
Border collision bifurcations: An explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994), 1073-1076.
doi: 10.1103/PhysRevE.49.1073. |
[27] |
Z. Qin, J. Yang, S. Banerjee and G. Jiang,
Border collision bifurcations in a generalized piecewise linear-power map, Discrete and Continuous Dynamical System, Series B, 16 (2011), 547-567.
doi: 10.3934/dcdsb.2011.16.547. |
[28] |
Z. Qin, Z. Yuejing, J. Yang and Y. Jichen,
Nonsmooth and smooth bifurcations in a discontinuous piecewise map, Int. J. Bifurcation and Chaos, 22 (2012), 1250112 (7 pages).
doi: 10.1142/S021812741250112X. |
[29] |
W. T. Shi, C. L. Gooderidge and D. P. Lathrop,
Viscous effects in droplet-ejecting capillary waves, Phys. Rev. E, 56 (1997), 41-57.
|
[30] |
I. Sushko, A. Agliari and L. Gardini,
Bistability and bifurcation curves for a unimodal piecewise smooth map, Discrete and Continuous Dynamical Systems, Serie B, 5 (2005), 881-897.
doi: 10.3934/dcdsb.2005.5.881. |
[31] |
I. Sushko, A. Agliari and L. Gardini,
Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves, Chaos Solitons Fractals, 29 (2006), 756-770.
doi: 10.1016/j.chaos.2005.08.107. |
[32] |
I. Sushko and L. Gardini,
Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps, Int. J. Bif. and Chaos, 20 (2010), 2045-2070.
doi: 10.1142/S0218127410026927. |
[33] |
I. Sushko, L. Gardini and K. Matsuyama,
Superstable credit cycles and U-sequence, Chaos Solitons Fractals, 59 (2014), 13-27.
doi: 10.1016/j.chaos.2013.11.006. |
[34] |
I. Sushko, V. Avrutin and L. Gardini,
Bifurcation structure in the skew tent map and its application as a border collision normal form, Journal of Difference Equations and Applications, 22 (2016), 582-629.
doi: 10.1080/10236198.2015.1113273. |
[35] |
H. Thunberg,
Periodicity versus chaos in one-dimensional dynamics, SIAM Rev, 43 (2001), 3-30.
doi: 10.1137/S0036144500376649. |
[36] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, SpringerVerlag, New York, 2003. |














[1] |
Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493 |
[2] |
Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881 |
[3] |
Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547 |
[4] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[5] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[6] |
Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457 |
[7] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[8] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[9] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 |
[10] |
Qin Pan, Jicai Huang, Qihua Huang. Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3533-3561. doi: 10.3934/dcdsb.2021195 |
[11] |
Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362 |
[12] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[13] |
Matthieu Astorg, Fabrizio Bianchi. Higher bifurcations for polynomial skew products. Journal of Modern Dynamics, 2022, 18: 69-99. doi: 10.3934/jmd.2022003 |
[14] |
Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021319 |
[15] |
Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017 |
[16] |
Elmehdi Amhraoui, Tawfik Masrour. Smoothing approximations for piecewise smooth functions: A probabilistic approach. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021033 |
[17] |
Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351 |
[18] |
Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687 |
[19] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
[20] |
Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]