This work is devoted to investigate the well-posedness and long-time behavior of solutions for the following nonlocal nonlinear partial differential equations in a bounded domain
$\begin{align*}u_t+(-Δ)^{σ/2}u +f(u) = g.\end{align*}$
Firstly, due to the lack of an upper growth restriction of the nonlinearity $f$, we have to utilize a weak compactness approach in an Orlicz space to obtain the well-posedness of weak solutions for the equations. We then establish the existence of $(L^2_0(Ω), L^2_0(Ω))$-absorbing sets and $(L^2_0(Ω), H^{σ/2}_0(Ω))$-absorbing sets for the solution semigroup $\{S(t)\}_{t≥q 0}$. Finally, we prove the existence of $(L^2_0(Ω), L^2_0(Ω))$-global attractor and $(L^2_0(Ω), H^{σ/2}_0(Ω))$-global attractor by a asymptotic compactness method.
Citation: |
D. Applebaum, Lévy Processes and Stochastic Calculus, Second edition. Cambridge Studies in Advanced Mathematics, 116. Cambridge University Press, Cambridge, 2009.
![]() ![]() |
|
I. Athanasopoulos
and L. A. Caffarelli
, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010)
, 293-315.
doi: 10.1016/j.aim.2009.11.010.![]() ![]() ![]() |
|
A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
![]() ![]() |
|
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996.
![]() ![]() |
|
C. Brändle
, E. Colorado
, A. de Pablo
and U. Sánchez
, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Math. Roy. Soc. Edinb., 143 (2013)
, 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
|
L. Caffarelli
and L. Silvestre
, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007)
, 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
|
L. Caffarelli
and A. Vasseur
, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
Z. Chen
and R. Song
, Hardy inequality for censored stable processes, Tohoku Math. J., 55 (2003)
, 439-450.
doi: 10.2748/tmj/1113247482.![]() ![]() ![]() |
|
R. Cont and P. Tankov, Financial Modelling With Jump Processes, Boca Raton, FL: Chapman Hall/CRC, 2004.
![]() ![]() |
|
J. Duan, An Introduction to Stochastic Dynamics, Cambridge University Press, New York, 2015.
![]() ![]() |
|
X. Fernández-Real
and X. Ros-Oton
, Boundary regularity for the fractional heat equation, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 10 (2016)
, 49-64.
doi: 10.1007/s13398-015-0218-6.![]() ![]() ![]() |
|
M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition. De Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011.
![]() ![]() |
|
P. Geredeli
and A. Khanmamedov
, Long-time dynamics of the parabolic $p$-Laplacian equation, Commun. Pure Appl. Anal., 12 (2013)
, 735-754.
![]() ![]() |
|
A. Kiselev
, F. Nazarov
and A. Volberg
, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007)
, 445-453.
doi: 10.1007/s00222-006-0020-3.![]() ![]() ![]() |
|
M. Krasnoselskii and Y. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
![]() ![]() |
|
J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, New York: Springer-Verlag, Vol Ⅰ, 1973.
![]() ![]() |
|
H. Lu
, P. Bates
, S. Lü
and M. Zhang
, Dynamics of the 3-D fractional complex GinzburgLandau equation, J. Differ. Equ., 259 (2015)
, 5276-5301.
doi: 10.1016/j.jde.2015.06.028.![]() ![]() ![]() |
|
H. Lu
, P. Bates
, S. Lü
and M. Zhang
, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016)
, 273-295.
doi: 10.4310/CMS.2016.v14.n1.a11.![]() ![]() ![]() |
|
J. Mercado, E. Guido, A. Sánchez-Sesma, M. ͘ñiguez and A. González, Analysis of the Blasius Formula and the Navier-Stokes Fractional Equation, Chapter Fluid Dynamics in Physics, Engineering and Environmental Applications Part of the series Environmental Science and Engineering, (2012), 475–480.
![]() |
|
R. Metzler
and J. Klafter
, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Mathematical and General, 37 (2004)
, 161-208.
doi: 10.1088/0305-4470/37/31/R01.![]() ![]() ![]() |
|
E. Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. sci. math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
A. de Pablo
, F. Quirós
, A. Rodriguez
and J. Vázquez
, A fractional porous medium equation, Adv. Math., 226 (2011)
, 1378-1409.
doi: 10.1016/j.aim.2010.07.017.![]() ![]() ![]() |
|
A. de Pablo
, F. Quirós
, A. Rodriguez
and J. Vázquez
, A general fractional porous medium
equation, Comm. Pure Applied Math., 65 (2012)
, 1242-1284.
doi: 10.1002/cpa.21408.![]() ![]() ![]() |
|
X. Ros-Oton
and J. Serra
, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014)
, 275-302.
doi: 10.1016/j.matpur.2013.06.003.![]() ![]() ![]() |
|
J. Simon
, Compact sets in the space Lp(O, T; B), Annali di Matematica Pura ed Applicata, 146 (1987)
, 65-96.
![]() ![]() |
|
R. Song
and Z. Vondraček
, Potential theory of subordinate killed Brownian motion in a
domain, Probab. Theory Relat. Fields, 125 (2003)
, 578-592.
doi: 10.1007/s00440-002-0251-1.![]() ![]() ![]() |
|
P. Stinga
and J. Torrea
, Extension problem and Harnack's inequality for some fractional operators, Commun. Partial Differ. Equ., 35 (2010)
, 2092-2122.
doi: 10.1080/03605301003735680.![]() ![]() ![]() |
|
J. Vázquez
, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014)
, 857-885.
doi: 10.3934/dcdss.2014.7.857.![]() ![]() ![]() |
|
M. Yang
, C. Sun
and C. Zhong
, Global attractors for p-Laplacian equation, J. Math. Anal. Appl., 327 (2007)
, 1130-1142.
doi: 10.1016/j.jmaa.2006.04.085.![]() ![]() ![]() |
|
X. Zhang
, Stochastic lagrangian particle approach to fractal Navier-Stokes equations, Commun. Math. Phys., 311 (2012)
, 133-155.
doi: 10.1007/s00220-012-1414-2.![]() ![]() ![]() |
|
C. Zhang
, J. Zhang
and C. Zhong
, Existence of weak solutions for fractional porous medium equations with nonlinear term, Appl. Math. Lett., 61 (2016)
, 95-101.
doi: 10.1016/j.aml.2016.05.001.![]() ![]() ![]() |
|
C. Zhong
, M. Yang
and C. Sun
, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differ. Equ., 223 (2006)
, 367-399.
doi: 10.1016/j.jde.2005.06.008.![]() ![]() ![]() |