March  2018, 23(2): 765-783. doi: 10.3934/dcdsb.2018042

Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

2. 

Department of Mathematics, Northeast Forestry University, Harbin, Heilongjiang 150040, China

* Corresponding author: Junjie Wei

Received  November 2016 Revised  October 2017 Published  December 2017

Fund Project: The corresponding author is supported by National Natural Science Foundation of China (Nos.11371111 and 11771109).

In this paper, the dynamics of a class of modified Leslie-Gower model with diffusion is considered. The stability of positive equilibrium and the existence of Turing-Hopf bifurcation are shown by analyzing the distribution of eigenvalues. The normal form on the centre manifold near the Turing-Hopf singularity is derived by using the method of Song et al. Finally, some numerical simulations are carried out to illustrate the analytical results. For spruce budworm model, the dynamics in the neighbourhood of the bifurcation point can be divided into six categories, each of which is exactly demonstrated by the numerical simulations. Then according to this dynamical classification, a stable spatially inhomogeneous periodic solution has been found, which can be used to explain the phenomenon of periodic outbreaks of spruce budworm.

Citation: Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042
References:
[1]

M. Aziz, Study of a Leslie-Gower-type tritrophic population, Chaos Soliton Fract., 14 (2002), 1275-1293.  doi: 10.1016/S0960-0779(02)00079-6.  Google Scholar

[2]

L. Chen and F. Chen, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330-1334.  doi: 10.1016/j.aml.2009.03.005.  Google Scholar

[3]

S. ChenJ. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed difusive LeslieGower predator-prey system, Int. J. Bifurcat. Chaos, 22 (2012), 1250061, 11pp-1334.   Google Scholar

[4]

S. ChenJ. Shi and J. Wei, The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response, Commun. Pur. Appl. Anal., 12 (2013), 481-501.   Google Scholar

[5]

J. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997), 149-168.  doi: 10.1007/s002850050095.  Google Scholar

[6]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, T. Am. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[7]

P. Feng and Y. Kang, Dynamics of a modified Leslie-Gower model with double Allee efects, Nonlinear Dynam., 80 (2015), 1051-1062.  doi: 10.1007/s11071-015-1927-2.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.  Google Scholar

[9]

G. GuoB. LiM. Wei and J. Huang, Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 391 (2012), 265-277.  doi: 10.1016/j.jmaa.2012.02.012.  Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonl. Anal. Real World Appl., 11 (2010), 819-826.  doi: 10.1016/j.nonrwa.2009.01.027.  Google Scholar

[11]

J. JinJ. ShiJ. Wei and F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mt. J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[12]

Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York, 1998.  Google Scholar

[13]

P. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31.  doi: 10.1093/biomet/45.1-2.16.  Google Scholar

[14]

P. Leslie and J. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[15]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA. J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[16]

P. LiuJ. ShiW. Wang and X. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013), 2001-2019.  doi: 10.1007/s10910-013-0196-x.  Google Scholar

[17]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal. Theor., 85 (2013), 204-213.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[18]

Y. Ma, Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays, Nonl. Anal. Real World Appl., 13 (2012), 370-375.  doi: 10.1016/j.nonrwa.2011.07.045.  Google Scholar

[19]

J. Murray, Mathematical Biology, 2nd edition, Springer-Verlag Berlin Heidelberg, New York, 1993.  Google Scholar

[20]

Y. SongT. Zhang and Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016), 229-258.  doi: 10.1016/j.cnsns.2015.10.002.  Google Scholar

[21]

Y. Song and X. Zhou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonliner Dynam., 78 (2014), 49-70.  doi: 10.1007/s11071-014-1421-2.  Google Scholar

[22]

X. TangY. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonliner Dynam., 86 (2016), 73-89.  doi: 10.1007/s11071-016-2873-3.  Google Scholar

[23]

J. WollkindJ. Collings and A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, B. Math. Biol., 50 (1988), 379-409.  doi: 10.1007/BF02459707.  Google Scholar

[24]

R. Yang and Y. Song, Spatial resonance and Turing-Hopf bifurcation in the Gierer-Meinhardt model, Nonl. Anal. Real World Appl., 31 (2016), 356-387.  doi: 10.1016/j.nonrwa.2016.02.006.  Google Scholar

[25]

F. YiJ. Wei and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal. Real World Appl., 9 (2008), 1038-1051.  doi: 10.1016/j.nonrwa.2007.02.005.  Google Scholar

[26]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[27]

J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent difusion, Nonlinear Anal. Theor., 82 (2013), 47-65.  doi: 10.1016/j.na.2012.12.014.  Google Scholar

show all references

References:
[1]

M. Aziz, Study of a Leslie-Gower-type tritrophic population, Chaos Soliton Fract., 14 (2002), 1275-1293.  doi: 10.1016/S0960-0779(02)00079-6.  Google Scholar

[2]

L. Chen and F. Chen, Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330-1334.  doi: 10.1016/j.aml.2009.03.005.  Google Scholar

[3]

S. ChenJ. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed difusive LeslieGower predator-prey system, Int. J. Bifurcat. Chaos, 22 (2012), 1250061, 11pp-1334.   Google Scholar

[4]

S. ChenJ. Shi and J. Wei, The effect of delay on a diffusive predator-prey system with Holling type-Ⅱ predator functional response, Commun. Pur. Appl. Anal., 12 (2013), 481-501.   Google Scholar

[5]

J. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997), 149-168.  doi: 10.1007/s002850050095.  Google Scholar

[6]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, T. Am. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[7]

P. Feng and Y. Kang, Dynamics of a modified Leslie-Gower model with double Allee efects, Nonlinear Dynam., 80 (2015), 1051-1062.  doi: 10.1007/s11071-015-1927-2.  Google Scholar

[8]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.  Google Scholar

[9]

G. GuoB. LiM. Wei and J. Huang, Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model, J. Math. Anal. Appl., 391 (2012), 265-277.  doi: 10.1016/j.jmaa.2012.02.012.  Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects, Nonl. Anal. Real World Appl., 11 (2010), 819-826.  doi: 10.1016/j.nonrwa.2009.01.027.  Google Scholar

[11]

J. JinJ. ShiJ. Wei and F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mt. J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[12]

Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer-Verlag, New York, 1998.  Google Scholar

[13]

P. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45 (1958), 16-31.  doi: 10.1093/biomet/45.1-2.16.  Google Scholar

[14]

P. Leslie and J. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[15]

X. LiW. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA. J. Appl. Math., 78 (2013), 287-306.  doi: 10.1093/imamat/hxr050.  Google Scholar

[16]

P. LiuJ. ShiW. Wang and X. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013), 2001-2019.  doi: 10.1007/s10910-013-0196-x.  Google Scholar

[17]

M. Liu and K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal. Theor., 85 (2013), 204-213.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[18]

Y. Ma, Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays, Nonl. Anal. Real World Appl., 13 (2012), 370-375.  doi: 10.1016/j.nonrwa.2011.07.045.  Google Scholar

[19]

J. Murray, Mathematical Biology, 2nd edition, Springer-Verlag Berlin Heidelberg, New York, 1993.  Google Scholar

[20]

Y. SongT. Zhang and Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci., 33 (2016), 229-258.  doi: 10.1016/j.cnsns.2015.10.002.  Google Scholar

[21]

Y. Song and X. Zhou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonliner Dynam., 78 (2014), 49-70.  doi: 10.1007/s11071-014-1421-2.  Google Scholar

[22]

X. TangY. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonliner Dynam., 86 (2016), 73-89.  doi: 10.1007/s11071-016-2873-3.  Google Scholar

[23]

J. WollkindJ. Collings and A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, B. Math. Biol., 50 (1988), 379-409.  doi: 10.1007/BF02459707.  Google Scholar

[24]

R. Yang and Y. Song, Spatial resonance and Turing-Hopf bifurcation in the Gierer-Meinhardt model, Nonl. Anal. Real World Appl., 31 (2016), 356-387.  doi: 10.1016/j.nonrwa.2016.02.006.  Google Scholar

[25]

F. YiJ. Wei and J. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal. Real World Appl., 9 (2008), 1038-1051.  doi: 10.1016/j.nonrwa.2007.02.005.  Google Scholar

[26]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[27]

J. Zhou, Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type Ⅱ functional response and density-dependent difusion, Nonlinear Anal. Theor., 82 (2013), 47-65.  doi: 10.1016/j.na.2012.12.014.  Google Scholar

Figure 1.  Stability region and bifurcation diagram for system (5) at the unique positive equilibrium $E^*$ in the parameter plane, where $f(u) = \frac{Au^2}{B+u^2}$, $A = 1, B = 0.0025, l = 1$. (a):$d_1 = 0.05, d_2 = 0.33$. (b):$d_1 = 0.05, d_2 = 0.28.$
Figure 2.  Bifurcation diagrams and dynamical classification near the Turing-Hopf point $P^*$
Figure 3.  When $(\mu_1, \mu_2) = (-0.01, 0.02)$ lies in region ①, the positive constant equilibrium $E^*(0.1296, 0.0167)$ is asymptotically stable. The initial value is $u(x, 0) = 0.1296+0.005\cos x, v(x, 0) = 0.0167+0.01\cos x$
Figure 4.  When $(\mu_1, \mu_2) = (0.022, 0.014)$ lies in region ②, the positive constant equilibrium $E^*(0.1296, 0.0208)$ is unstable and there are two stable spatially inhomogeneous steady states like $\cos x$. (a) and (b) The initial value is $u(x, 0) = 0.1296-0.02\cos x, v(x, 0) = 0.0208+0.01\cos x$; (c) and (d) the initial value is $u(x, 0) = 0.1296+0.02\cos x, v(x, 0) = 0.0208-0.01\cos x$
Figure 5.  When $(\mu_1, \mu_2) = (0.02, 0.01)$ lies in region ③, the positive constant equilibrium $E^*(0.1296, 0.0206)$ is unstable and there is a heteroclinic orbit connecting the unstable spatially homogeneous periodic solution to stable spatially inhomogeneous steady state. The initial value is $u(x, 0) = 0.1576-0.002\cos x, v(x, 0) = 0.0234$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are middle-term behaviours for $u$ and $v$, respectively; (e) and (f) are long-term behaviours for $u$ and $v$, respectively
Figure 6.  When $(\mu_1, \mu_2) = (0.4, 0.12)$ lies in region ④, the positive constant equilibrium $E^*(0.1296, 0.0698)$ is unstable and there are stable spatially inhomogeneous periodic solution. The initial value is $u(x, 0) = 0.1306-0.001\cos x, v(x, 0) = 0.0691+0.001\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively
Figure 7.  When $(\mu_1, \mu_2) = (-0.01, -0.015)$ lies in region ⑤, the positive constant equilibrium $E^*(0.1296, 0.0167)$ is unstable and there are heteroclinic solution connecting the unstable spatially inhomogeneous steady state to stable spatially homogeneous periodic solution. The initial value is $u(x, 0) = 0.1526-0.065\cos x, v(x, 0) = 0.0189-0.0015\cos x$. (a) and (b) are transient behaviours for $u$ and $v$, respectively; (c) and (d) are long-term behaviours for $u$ and $v$, respectively
Figure 8.  When $(\mu_1, \mu_2) = (-0.02, -0.022)$ lies in region ⑥, the positive constant equilibrium $E^*(0.1296, 0.0154)$ is unstable and there is a stable spatially homogeneous periodic solution. The initial value is $u(x, 0) = 0.1296, v(x, 0) = 0.0154-0.001\cos x$
[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (213)
  • HTML views (245)
  • Cited by (2)

Other articles
by authors

[Back to Top]