|
H. Chen
and J. Sun
, Stability analysis for coupled systems with time delay on networks, Physica A, 391 (2012)
, 528-534.
doi: 10.1016/j.physa.2011.08.037.
|
|
C. Cheng
, T. Liao
and C. Wang
, Exponential synchronization of a class of chaotic neural networks, Chaos Soliton. Fract., 24 (2005)
, 197-206.
doi: 10.1016/S0960-0779(04)00566-1.
|
|
C. Cheng
, Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication, Appl. Math. Comput., 219 (2012)
, 2698-2712.
doi: 10.1016/j.amc.2012.08.101.
|
|
Y. Dong and J. Chen, Finite-time outer synchronization between two complex dynamical networks with on-off coupling, Int. J. Model Phys. C, 26 (2015), 1550095, 13 pp.
|
|
P. Du
and M. Y. Li
, Impact of network connectivity on the synchronization and global dynamics of coupled systems of differential equations, Physica D, 286/287 (2014)
, 32-42.
doi: 10.1016/j.physd.2014.07.008.
|
|
W. Du, J. Zhang, X. An, S. Qin and J. Yu, Outer synchronization between two coupled complex networks and its application in public traffic supernetwork, Discrete Dyn. Nat. Soc. , 2016 (2016), Art. ID 8920764, 8 pp.
|
|
R. Ghosh
and K. Lerman
, Rethinking Centrality: The role of dynamical processes in social network analysis, Discrete cont. Dyn-B, 19 (2014)
, 1355-1372.
doi: 10.3934/dcdsb.2014.19.1355.
|
|
Y. Guo
, S. Liu
and X. Ding
, The existence of periodic solutions for coupled Rayleigh system, Neurocomputing, 191 (2016)
, 398-408.
doi: 10.1016/j.neucom.2016.01.039.
|
|
H. Guo
, M. Y. Li
and Z. Shuai
, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008)
, 2793-2802.
doi: 10.1090/S0002-9939-08-09341-6.
|
|
H. Guo
, M. Y. Li
and Z. Shuai
, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012)
, 261-279.
doi: 10.1137/110827028.
|
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
|
|
Y. Kao
and C. Wang
, Global stability analysis for stochastic coupled reaction-diffusion systems on networks, Nonlinear Anal. RWA., 14 (2013)
, 1457-1465.
doi: 10.1016/j.nonrwa.2012.10.008.
|
|
R. Leander
, S. Lenhart
and V. Protopopescu
, Controlling synchrony in a network of Kuramoto oscillators with time-varying coupling, Physica D, 301/302 (2015)
, 36-47.
doi: 10.1016/j.physd.2015.03.003.
|
|
T. Li
, B. Rao
and Y. Wei
, Generalized exact boundary synchronization for a coupled system of wave equation, Discrete cont. Dyn-A, 34 (2014)
, 2893-2905.
|
|
W. Li
, S. Liu
and D. Xu
, The existence of periodic solutions for coupled pantograph Rayleigh system, Math. Methods Appl. Sci., 39 (2016)
, 1667-1679.
doi: 10.1002/mma.3556.
|
|
C. Li
, W. Sun
and J. Kurths
, Synchronization between two coupled complex networks, Phys. Rev. E, 76 (2007)
, 046204.
doi: 10.1103/PhysRevE.76.046204.
|
|
M. Y. Li
and Z. Shuai
, Global-stability problem for coupled systems of differential equations on networks, J. Differ. Equ., 248 (2010)
, 1-20.
doi: 10.1016/j.jde.2009.09.003.
|
|
W. Li
, H. Su
and K. Wang
, Global stability analysis for stochastic coupled systems on networks, Automatica, 47 (2011)
, 215-220.
doi: 10.1016/j.automatica.2010.10.041.
|
|
B. Lisena
, Average criteria for periodic neural networks with delay, Discrete cont. Dyn-B, 19 (2014)
, 761-773.
doi: 10.3934/dcdsb.2014.19.761.
|
|
X. Liu
and T. Chen
, Boundedness and synchronization of $y$-coupled Lorenz systems with or without controllers, Physica D, 237 (2008)
, 630-639.
doi: 10.1016/j.physd.2007.10.006.
|
|
Y. Lou
, W. M. Ni
and S. Yotsutani
, Pattern formation in a cross-diffusion system, Discrete cont. Dyn-A, 35 (2015)
, 1589-1607.
|
|
K. Mischaikow
, H. Smith
and H. Thieme
, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions, T. Am. Math. Soc., 347 (1995)
, 1669-1685.
doi: 10.1090/S0002-9947-1995-1290727-7.
|
|
K. Modin
and O. Verdier
, Integrability of nonholonomically coupled oscillators, Discrete cont. Dyn-A, 34 (2014)
, 1121-1130.
|
|
H. Shu
, D. Fan
and J. Wei
, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. RWA., 13 (2012)
, 1581-1592.
doi: 10.1016/j.nonrwa.2011.11.016.
|
|
S. H. Strogatz
, Exploring complex networks, Nature, 140 (2001)
, 268-276.
doi: 10.1038/35065725.
|
|
H. Su, W. Li and K. Wang, Global stability analysis of discrete-time coupled systems on networks and its applications, Chaos, 22 (2012), 033135, 11pp.
|
|
R. Tarjan
, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972)
, 146-160.
doi: 10.1137/0201010.
|
|
H. Thieme
, Asymptotically autonomous differential equations in the plane, Rocky Mt. J. Math., 24 (1994)
, 351-380.
|
|
J. P. Tseng
, Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays, Discrete cont. Dyn-A, 33 (2013)
, 4693-4729.
doi: 10.3934/dcds.2013.33.4693.
|
|
G. Wang
, J. Cao
and J. Lu
, Outer synchronization between two nonidentical networks with circumstance noise, Physica A, 389 (2010)
, 1480-1488.
doi: 10.1016/j.physa.2009.12.014.
|
|
D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.
|
|
J. Xu, D. Park and J. Jo, Local complexity predicts global synchronization of hierarchically networked oscillators, Chaos, 27 (2017), 073116, 11pp.
|
|
C. Zhang
, W. Li
and K. Wang
, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015)
, 1698-1709.
doi: 10.1109/TNNLS.2014.2352217.
|
|
L. Zhang
, Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks, Discrete cont. Dyn-A, 34 (2014)
, 2405-2450.
|
|
S. Zheng
, S. Wang
, G. Dong
and Q. Bi
, Adaptive synchronization of two nonlinearly coupled complex dynamical networks with delayed coupling, Commun. Nonlinear Sci. Numer. Simul., 17 (2012)
, 284-291.
doi: 10.1016/j.cnsns.2010.11.029.
|
|
Q. Zhu
and J. Cao
, pth moment exponential synchronization for stochastic delayed Cohen-Grossberg neural networks with Markovian switching, Nonlinear Dyn., 67 (2012)
, 829-845.
doi: 10.1007/s11071-011-0029-z.
|