\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hopf bifurcation of an age-structured virus infection model

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • In this paper, we introduce and analyze a mathematical model of a viral infection with explicit age-since infection structure for infected cells. We extend previous age-structured within-host virus models by including logistic growth of target cells and allowing for absorption of multiple virus particles by infected cells. The persistence of the virus is shown to depend on the basic reproduction number $R_{0}$. In particular, when $R_{0}≤1$, the infection free equilibrium is globally asymptotically stable, and conversely if $R_{0}> 1$, then the infection free equilibrium is unstable, the system is uniformly persistent and there exists a unique positive equilibrium. We show that our system undergoes a Hopf bifurcation through which the infection equilibrium loses the stability and periodic solutions appear.

    Mathematics Subject Classification: Primary: 37N25, 37B25; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A numerical solution of system (40) tends to the infection-free equilibrium $E_0$, as time tends to infinity, wherein parameter values are $[s, k, T_{0}, p, d, \gamma, \delta] = [0.038, 0.0045, 4.6137, 1, 0.093, 0.4, 0.028]$. In this case $R_0 = 0.6518$. (A) Time series of $T$, $T^*$ and $V$. (B) An orbit in the $TVT^*$ space. Eigenvalues of linearized matrix about $\overline{E}$ are $\lambda_1 =-0.0779 + 0.0000i, \lambda_2 = 0.0004 - 0.0209i, \lambda_3 =0.0004 + 0.0209i.$

    Figure 2.  A numerical solution of system (40) approaches to $\overline{E}$, as time tends to infinity, and $\bar{E}$ is stable, wherein parameter values are $[s, k, T_{0}, p, d, \gamma, \delta] = $ $[0.03285, 0.01, 4.6137, 1.3, 0.045, 0.1, 0.0351]$. In this case $R_0 = 16.0999$, $\bar{E} = (\bar{T},\bar{V},\bar{I}) =[0.2212, 3.1275, 0.1971]$. (A) Time series of $T$, $T^*$ and $V$. (B) An orbit in the $TVT^*$ space.

    Figure 3.  A numerical solution of system (40) tends to the limit cycle, as time tends to infinity, and $\bar{E}$ is unstable, wherein parameter values are $[s, k, T_{0}, p, d, \gamma, \delta] = $ $[0.03285, 0.01, 4.6137, 1.3, 0.03, 0.1, 0.0351]$. In this case $R_0 = 22.4437$, $(\bar{T},\bar{V},\bar{I}) =[ 0.1115, 3.2056, 0.1018]$. (A) Time series of $T$, $T^*$ and $V$. (B) An orbit in the $TVT^*$ space. Eigenvalues of linearized matrix about $\overline{E}$ are $\lambda_1 =-0.0779 + 0.0000i, \lambda_2 = 0.0004 - 0.0209i, \lambda_3 =0.0004 + 0.0209i.$

    Figure 4.  A numerical solution of system (41)-(44) tends to the DFE, as time tends to infinity, wherein parameter values are $[s,T0,k,\rho,d,\gamma,\tau,\mu,\nu] = $ $[.1,100000,0.0000005,200,13,0.000003,2,0.05,0.7]$. In this case $R_0 =0.9905$ and $(\bar{T},\bar{V},\bar{I}) =[ 10^5, 0 , 0]$. (A) Time series of $T$, $T^* = J+I$ and $V$. (B) An orbit in the $TVT^*$ space.

    Figure 5.  A numerical solution of system (41)-(44) tends to the $\bar{E}$, as time tends to infinity, and $\bar{E}$ is stable, wherein parameter values are $[s,T0,k,\rho,d,\gamma,\tau,\mu,\nu] = $ $[.1,100000,0.0000008,200,13,0.000003,2,0.05,0.7]$. In this case $R_0 =1.5812$, $(\bar{T},\bar{V},\bar{J}+\bar{I}) =[ 6.3209\times 10^4, 4.5989\times 10^4, 7.4321\times 10^3]$. The probability of re-infection of infected cells during eclipse phase (during age $0\leq a \leq \tau$) calculated at $\bar{E}$ is $\pi(\tau) = 0.23$. (A) Time series of $T$, $T^* = J+I$ and $V$. (B) An orbit in the $TVT^*$ space.

    Figure 6.  A numerical solution of system (41)-(44) tends to the limit cycle, as time tends to infinity, and $\bar{E}$ is unstable, wherein parameter values are $[s,T0,k,\rho,d,\gamma,\tau,\mu,\nu] = $ $[1,100000, 0.000005,200, 13, 0.000001, 2, 0.05, 0.7]$. In this case $R_0 =9.5750$, $(\bar{T},\bar{V},\bar{J}+\bar{I}) =[ 1.0119\times 10^4, 1.7976\times 10^5, 2.9066\times 10^4]$. The probability of re-infection of infected cells during eclipse phase calculated at $\bar{E}$ is $\pi(\tau) = 0.2882$. (A) Time series of $T$, $T^* = J+I$ and $V$. (B) An orbit in the $TVT^*$ space.

    Table 1.  Parameter definition and values from literatures.

    Parameter Value Description Reference
    $e$ day$^{-1}$ Maximum proliferation rate See text
    $g$ 0.008 day$^{-1}$ Death rate of uninfected cells [27]
    $T_{\text{max}}$ mm$^{-3}$ Density of $T$ cell at which proliferation shouts off See text
    $k$ $5 \times 10^{-7}$ ml virion day$^{-1}$ Infection rate of target cells by virus [27]
    $\delta$ 0.8 day$^{-1}$ Death rate of infected cells [32]
    p Varied Virion production rate of an infected cell See text
    $d$ 3 day$^{-1}$ clearance rate of free virus [22]
    $\gamma$ day$^{-1}$ Reinfection rate of infected cells by virus See text
     | Show Table
    DownLoad: CSV
  •   R. Adams and J. Fournier, Sobolev spaces, "Second edition", Pure Appl. Math., 140, Elsevier/Academic Press, Amsterdam, 2003.
      I. Rob De Boer  and  A. S. Perelson , Target cell limited and immune control models of HIV infection: A comparison, Journal of Theoretical Biology, 190 (1998) , 201-214. 
      B. Brandenburg, L. Y. Lee, M. Lakadamyali, M. J. Rust, X. Zhuang and J. M. Hogle, Imaging poliovirus entry in live cells, PLoS Biology, 5 (2007), e183, http://doi.org/10.1371/journal.pbio.0050183.
      C. J. Browne , A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Analysis: Real World Applications, 22 (2015) , 354-372.  doi: 10.1016/j.nonrwa.2014.10.004.
      C. J. Browne , Immune response in virus model structured by cell infection-age, Mathematical Biosciences and Engineering, 13 (2016) , 887-909.  doi: 10.3934/mbe.2016022.
      C. J. Browne  and  S. S. Pilyugin , Global analysis of age-structured within-host virus model, DCDS-B, 18 (2013) , 1999-2017.  doi: 10.3934/dcdsb.2013.18.1999.
      R. V. Culshaw  and  S. Ruan , A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000) , 27-39.  doi: 10.1016/S0025-5564(00)00006-7.
      P. De Leenheer  and  H. L. Smith , Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003) , 1313-1327.  doi: 10.1137/S0036139902406905.
      M. N. Dixit  and  A. S. Perelson , Multiplicity of human immunodeficiency virus infections in lymphoid tissue, Journal of Virology, 78 (2004) , 8942-8945. 
      P. Dustin  and  D. Wodarz , Modeling multiple infection of cells by viruses: Challenges and insights, Mathematical biosciences, 264 (2015) , 21-28.  doi: 10.1016/j.mbs.2015.03.001.
      J. K. Hale , J. P. Lasalle  and  M. Slemrod , Theory of a general class of dissipative processes, J. Math. Anal. Appl., 39 (1972) , 177-191.  doi: 10.1016/0022-247X(72)90233-8.
      J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematics Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.
      J. K. Hale  and  P. Waltman , Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989) , 388-395.  doi: 10.1137/0520025.
      S. Hongying , L. Wang  and  J. Watmough , Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM Journal on Applied Mathematics, 73 (2013) , 1280-1302.  doi: 10.1137/120896463.
      G. Huang , X. Liu  and  Y. Takeuchi , Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012) , 25-58.  doi: 10.1137/110826588.
      L. Josefsson, M. S. King, B. Makitalo, J. Brännström, W. Shao, F. Maldarelli and M. F. Kearney et al. Majority of CD4+ T cells from peripheral blood of HIV-1 infected individuals contain only one HIV DNA molecule, Proceedings of the National Academy of Sciences, 108 (2011), 11199-11204.
      D. Kirschner  and  G. F. Webb , A model for treatment strategy in the chemotherapy of AIDS, Bull. Math. Biol., 58 (1996) , 367-390.  doi: 10.1007/BF02458312.
      P. Magal  and  X. Q. Zhao , Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005) , 251-275.  doi: 10.1137/S0036141003439173.
      C. C. McCluskey , Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng, 9 (2012) , 819-841.  doi: 10.3934/mbe.2012.9.819.
      P. W. Nelson , M. A. Gilchrist , D. Coombs , J. M. Hyman  and  A. S. Perelson , An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004) , 267-288.  doi: 10.3934/mbe.2004.1.267.
      M. A. Nowak and R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000.
      A. S. Perelson , A. U. Neumann , M. Markowitz , J. M. Leonard  and  D. D. Ho , HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span and viral generation time, Science, 271 (1996) , 1582-1586.  doi: 10.1126/science.271.5255.1582.
      A. S. Perelson  and  P. W. Nelson , Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999) , 3-44.  doi: 10.1137/S0036144598335107.
      H. Pourbashash , S. S. Pilyugin , P. De Leenheer  and  C. C. McCluskey , Global analysis of within host virus models with cell-to-cell viral transmission, DCDS-B, 19 (2014) , 3341-3357.  doi: 10.3934/dcdsb.2014.19.3341.
      L. Rong , Z. Feng  and  A. S. Perelson , Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM. J. Appl. Math., 67 (2007) , 731-756.  doi: 10.1137/060663945.
      Libin Rong  and  A. S. Perelson , Modeling HIV persistence, the latent reservoir, and viral blips, Journal of Theoretical Biology, 260 (2009) , 308-331.  doi: 10.1016/j.jtbi.2009.06.011.
      M. A. Stafford , L. Corey , Y. Cao , E. S. Daar , D. D. Ho  and  A. S. Perelson , Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 23 (2000) , 285-301.  doi: 10.1006/jtbi.2000.1076.
      R. V. Ursache , Y. E. Thomassen , G. Van Eikenhorst , P. J. T. Verheijen  and  W. A. M. Bakker , Mathematical model of adherent Vero cell growth and poliovirus production in animal component free medium, Bioprocess Biosyst Eng., 38 (2015) , 543-555.  doi: 10.1007/s00449-014-1294-2.
      Y. Wang , Viral dynamics model with CTL immune response incorporating antiretroviral therapy, Journal of Mathematical Biology, 67 (2013) , 901-934.  doi: 10.1007/s00285-012-0580-3.
      G. F. Webb  and  C. J. Browne. A model of the Ebola epidemics in West Africa incorporating age of infection , A model of the Ebola epidemics in West Africa incorporating age of infection, Journal of Biological Dynamics, 10 (2016) , 18-30.  doi: 10.1080/17513758.2015.1090632.
      Y. Yang , S. Ruan  and  D. Xiao , Global stability of an age-structured virus dynamics model with Bedington-Deangelis infection function, Math. Biosci. Eng., 12 (2015) , 859-877.  doi: 10.3934/mbe.2015.12.859.
      J. A. Zack , S. J. Arrigo , S. R. Weitsman , A. S. Go , A. Haislip  and  I. S. Chen , HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile latent viralstructure, Cell, 61 (1990) , 213-222.  doi: 10.1016/0092-8674(90)90802-L.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(1032) PDF downloads(487) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return