\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis

Abstract Full Text(HTML) Figure(16) Related Papers Cited by
  • We provide the phase portraits in the Poincaré disk for all the linear type centers of polynomial Hamiltonian systems with nonlinearities of degree $4$ symmetric with respect to the $y$-axis given by the Hamiltonian function $H(x,y) =1/2(x^2+y^2)+ax^4y+bx^2y^3+cy^5$ in function of its parameters.

    Mathematics Subject Classification: Primary 34C07; Secondary: 34C08.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portraits for the Hamiltonian systems (2). The separatrices are in bold.

    Figure 2.  The blow-ups of the origin of the chart $U_1$ for system (8). The dotted line represents a straight line of equilibria.

    Figure 3.  Local phase portraits at the equilibria of system (2) if $a = b = 0$ and $c\neq 0$.

    Figure 4.  Local phase portrait at the origin of: (a) system (14), (b) system (15)

    Figure 5.  Local phase portraits at the equilibria of system (2) if $a = c = 0$ and $b\neq 0$.

    Figure 6.  BLocal phase portraits at the origin of systems (18).

    Figure 7.  Local phase portraits at the equilibria of system (16) when $a = 0$ and $bc\neq 0$.

    Figure 8.  Local phase portrait at the origin of system (21). (a) if $b\geq 0$, (b) if $b<0$.

    Figure 9.  Local phase portraits at the equilibria of system (2) when $c = 0$ and $ab\neq0$.

    Figure 10.  Local phase portraits at the equilibria $p_2$ and $p_3$ of system (23) after translating to the origin. (a) $p_2$, (b) $p_3$

    Figure 11.  Local phase portraits at the equilibria of system associated to Hamiltonian (3) when $ac \neq 0$.

    Figure 12.  Graph of the function $f(b,c) = h_{2}-h_{5}$ on the $(b,c)$-plan. In cases (a): $b^2-4c<0$, $\Delta >0 $, $0\leq b<4/3$ and $c>2b/5$, (b): $b^2-4c<0$, $\Delta>0 $, $b\leq 0$ and $c>b^2/4$.

    Figure 13.  (a): Graph of the functions $f(b,c) = h_{2}-h_{5} $ and its intersection with the $(b,c)$-plane, under the conditions of the existence of Figure 11(g), i.e., when (ⅶ) holds, (b): Graph of the functions $f(b,c) = h_{3}-h_{5} $ and its intersection with the $(b,c)$-plane under the conditions of the existence of Figure 11(f), i.e., in the case (ⅵ).

    Figure 14.  (a): Graph of the functions $f_{35}(b,c) = h_{3}-h_{5} $ and its intersection with the $(b,c)$-plane, i.e., when (ⅷ) holds, (b): Graph of the functions $f_{23}(b,c)$ and $f_{25}$ in the region where $f_{35}>0$.

    Figure 15.  Level curve $h_2$ passing though $e_2$. (a) Region $h_5<h_2<h_3$, (b) Region $h_5<h_2 = h_3$, (c) Region $h_5<h_3<h_2$,

    Figure 16.  (a): Graph of the functions $f_{35}(b,c) = 0$, (b): Graph of the functions $f_{23}(b,c) = 0$ and $f_{25}(b,c) = 0$ in the region where $f_{35}>0$.

  •   V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equations. Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988.
      J. C. Artés  and  J. Llibre , Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994) , 80-95.  doi: 10.1006/jdeq.1994.1004.
      N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 1954 (1954), 1-19.
      J. Chavarriga  and  J. Giné , Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996) , 21-39.  doi: 10.5565/PUBLMAT_40196_03.
      J. Chavarriga  and  J. Giné , Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997) , 335-356.  doi: 10.5565/PUBLMAT_41297_02.
      A. Cima  and  J. Llibre , Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. of Math. Anal. and Appl., 147 (1990) , 420-448.  doi: 10.1016/0022-247X(90)90359-N.
      I. Colak , J. Llibre  and  C. Valls , Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014) , 1623-1661.  doi: 10.1016/j.jde.2014.05.024.
      H. Dulac , Détermination et integration d' une certaine classe d' équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér., 32 (1908) , 230-252. 
      F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Spring-Verlag, 2006.
      I. Iliev , On second order bifurcations of limit cycles, J. London Math. Soc (2), 58 (1998) , 353-366.  doi: 10.1112/S0024610798006486.
      W. Kapteyn , On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, 19 (1911) , 1446-1457. 
      W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27-33 (in Dutch).
      J. Llibre  and  A. C. Mereu , Limit cycles for a class of discontinuous generalized Lienard polynomial differential equations, Electronic J. of Differential Equations, 2013 (2013) , 1-8. 
      K. E. Malkin , Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964) , 87-91. 
      L. Markus , Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954) , 127-148.  doi: 10.1090/S0002-9947-1954-0060657-0.
      D. A. Neumann , Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975) , 73-81.  doi: 10.1090/S0002-9939-1975-0356138-6.
      M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, 389-420, Acad. Press, New York, 1973.
      H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1 (1951), 3-84.
      C. Rousseau  and  D. Schlomiuk , Cubic vector fields symmetric with respect to a center, J. Differential Equations, 123 (1995) , 388-436.  doi: 10.1006/jdeq.1995.1168.
      D. Schlomiuk , Algebraic particular integrals, integrability and the problem of the centre, Trans. Amer. Math. Soc., 338 (1993) , 799-841.  doi: 10.1090/S0002-9947-1993-1106193-6.
      N. I. Vulpe , Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differentsial?nye Uravneniya, 19 (1983) , 371-379. 
      N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201.
      H. Żołądek , The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994) , 79-136.  doi: 10.12775/TMNA.1994.024.
      H. Żołądek, Remarks on: 'The classification of reversible cubic systems with center', Topol. Methods Nonlinear Anal., 4 (1994), 79-136], Topol. Methods Nonlinear Anal., 8 (1996), 335-342.
  • 加载中

Figures(16)

SHARE

Article Metrics

HTML views(785) PDF downloads(249) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return