We provide the phase portraits in the Poincaré disk for all the linear type centers of polynomial Hamiltonian systems with nonlinearities of degree $4$ symmetric with respect to the $y$-axis given by the Hamiltonian function $H(x,y) =1/2(x^2+y^2)+ax^4y+bx^2y^3+cy^5$ in function of its parameters.
Citation: |
Figure 13. (a): Graph of the functions $f(b,c) = h_{2}-h_{5} $ and its intersection with the $(b,c)$-plane, under the conditions of the existence of Figure 11(g), i.e., when (ⅶ) holds, (b): Graph of the functions $f(b,c) = h_{3}-h_{5} $ and its intersection with the $(b,c)$-plane under the conditions of the existence of Figure 11(f), i.e., in the case (ⅵ).
V. I. Arnold and Y. S. Ilyashenko, Dynamical Systems I, Ordinary Differential Equations. Encyclopaedia of Mathematical Sciences, Vols 1-2, Springer-Verlag, Heidelberg, 1988.
![]() |
|
J. C. Artés
and J. Llibre
, Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994)
, 80-95.
doi: 10.1006/jdeq.1994.1004.![]() ![]() ![]() |
|
N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb., 30 (1952), 181-196; Mer. Math. Soc. Transl., 1954 (1954), 1-19.
![]() ![]() |
|
J. Chavarriga
and J. Giné
, Integrability of a linear center perturbed by a fourth degree homogeneous polynomial, Publ. Mat., 40 (1996)
, 21-39.
doi: 10.5565/PUBLMAT_40196_03.![]() ![]() ![]() |
|
J. Chavarriga
and J. Giné
, Integrability of a linear center perturbed by a fifth degree homogeneous polynomial, Publ. Mat., 41 (1997)
, 335-356.
doi: 10.5565/PUBLMAT_41297_02.![]() ![]() ![]() |
|
A. Cima
and J. Llibre
, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. of Math. Anal. and Appl., 147 (1990)
, 420-448.
doi: 10.1016/0022-247X(90)90359-N.![]() ![]() ![]() |
|
I. Colak
, J. Llibre
and C. Valls
, Hamiltonian non-degenerate centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations, 257 (2014)
, 1623-1661.
doi: 10.1016/j.jde.2014.05.024.![]() ![]() ![]() |
|
H. Dulac
, Détermination et integration d' une certaine classe d' équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér., 32 (1908)
, 230-252.
![]() |
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Spring-Verlag, 2006.
![]() ![]() |
|
I. Iliev
, On second order bifurcations of limit cycles, J. London Math. Soc (2), 58 (1998)
, 353-366.
doi: 10.1112/S0024610798006486.![]() ![]() ![]() |
|
W. Kapteyn
, On the midpoints of integral curves of differential equations of the first Degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk. Konikl. Nederland, 19 (1911)
, 1446-1457.
![]() |
|
W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20 (1912), 1354-1365; Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 21 (1913), 27-33 (in Dutch).
![]() |
|
J. Llibre
and A. C. Mereu
, Limit cycles for a class of discontinuous generalized Lienard polynomial differential equations, Electronic J. of Differential Equations, 2013 (2013)
, 1-8.
![]() ![]() |
|
K. E. Malkin
, Criteria for the center for a certain differential equation, Vols. Mat. Sb. Vyp., 2 (1964)
, 87-91.
![]() ![]() |
|
L. Markus
, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc., 76 (1954)
, 127-148.
doi: 10.1090/S0002-9947-1954-0060657-0.![]() ![]() ![]() |
|
D. A. Neumann
, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc., 48 (1975)
, 73-81.
doi: 10.1090/S0002-9939-1975-0356138-6.![]() ![]() ![]() |
|
M. M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, 389-420, Acad. Press, New York, 1973.
![]() ![]() |
|
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37 (1881), 375-422; Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1 (1951), 3-84.
![]() |
|
C. Rousseau
and D. Schlomiuk
, Cubic vector fields symmetric with respect to a center, J. Differential Equations, 123 (1995)
, 388-436.
doi: 10.1006/jdeq.1995.1168.![]() ![]() ![]() |
|
D. Schlomiuk
, Algebraic particular integrals, integrability and the problem of the centre, Trans. Amer. Math. Soc., 338 (1993)
, 799-841.
doi: 10.1090/S0002-9947-1993-1106193-6.![]() ![]() ![]() |
|
N. I. Vulpe
, Affine-invariant conditions for the topological discrimination of quadratic systems with a center, Differentsial?nye Uravneniya, 19 (1983)
, 371-379.
![]() ![]() |
|
N. I. Vulpe and K. S. Sibirskii, Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk. SSSR, 301 (1988), 1297-1301 (in Russian); translation in: Soviet Math. Dokl., 38 (1989), 198-201.
![]() ![]() |
|
H. Żołądek
, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994)
, 79-136.
doi: 10.12775/TMNA.1994.024.![]() ![]() ![]() |
|
H. Żołądek, Remarks on: 'The classification of reversible cubic systems with center', Topol. Methods Nonlinear Anal., 4 (1994), 79-136], Topol. Methods Nonlinear Anal., 8 (1996), 335-342.
![]() ![]() |
Phase portraits for the Hamiltonian systems (2). The separatrices are in bold.
The blow-ups of the origin of the chart
Local phase portraits at the equilibria of system (2) if
Local phase portrait at the origin of: (a) system (14), (b) system (15)
Local phase portraits at the equilibria of system (2) if
BLocal phase portraits at the origin of systems (18).
Local phase portraits at the equilibria of system (16) when
Local phase portrait at the origin of system (21). (a) if
Local phase portraits at the equilibria of system (2) when
Local phase portraits at the equilibria
Local phase portraits at the equilibria of system associated to Hamiltonian (3) when
Graph of the function
(a): Graph of the functions
(a): Graph of the functions
Level curve
(a): Graph of the functions