Micropolar fluid and magneto-micropolar fluid systems are systems of equations with distinctive feature in its applicability and also mathematical difficulty. The purpose of this work is to follow the approach of [
Citation: |
G. Ahmadi
and M. Shahinpoor
, Universal stability of magneto-micropolar fluid motions, Int. J. Engng. Sci., 12 (1974)
, 657-663.
doi: 10.1016/0020-7225(74)90042-1.![]() ![]() ![]() |
|
A. Bensoussan
, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995)
, 267-304.
doi: 10.1007/BF00996149.![]() ![]() ![]() |
|
J. L. Boldrini
, M. A. Rojas-Medar
and E. Fernández-Cara
, Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids, J. Math. Pures Appl., 82 (2003)
, 1499-1525.
doi: 10.1016/j.matpur.2003.09.005.![]() ![]() ![]() |
|
A. Budhiraja
and P. Dupuis
, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20 (2000)
, 39-61.
![]() ![]() |
|
A. Budhiraja
, P. Dupuis
and V. Maroulas
, Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36 (2008)
, 1390-1420.
doi: 10.1214/07-AOP362.![]() ![]() ![]() |
|
S. Cerrai
and M. Röckner
, Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Ann. Probab., 32 (2004)
, 1100-1139.
doi: 10.1214/aop/1079021473.![]() ![]() ![]() |
|
M.-H. Chang
, Large deviation for Navier-Stokes equations with small stochastic perturbation, App. Math. Comput., 76 (1996)
, 65-93.
doi: 10.1016/0096-3003(95)00150-6.![]() ![]() ![]() |
|
I. Chueshov
and A. Millet
, Stochastic 2D hydrodynamical type systems: Well posedness and large deviations, Appl. Math. Optim., 61 (2010)
, 379-420.
doi: 10.1007/s00245-009-9091-z.![]() ![]() ![]() |
|
I. Chueshov
and A. Millet
, Stochastic two-dimensional hydrodynamical systems: Wong-Zakai approximation and support theorem, Stoch. Anal. Appl., 29 (2011)
, 570-611.
doi: 10.1080/07362994.2011.581081.![]() ![]() ![]() |
|
P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988.
![]() ![]() |
|
N. J. Cutland
and B. Enright
, Stochastic nonhomogeneous incompressible Navier-Stokes equations, J. Differential Equations, 228 (2006)
, 140-170.
doi: 10.1016/j.jde.2006.04.009.![]() ![]() ![]() |
|
G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge University Press, U. K., 2014.
![]() ![]() |
|
A. Dembo and O. Zeitouni Large Deviations Techniques and Applications, Springer-Verlag, Berlin, Heidelberg, 1998.
![]() ![]() |
|
B.-Q. Dong
and Z. Zhang
, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differential Equations, 249 (2010)
, 200-213.
doi: 10.1016/j.jde.2010.03.016.![]() ![]() ![]() |
|
J. Duan
and A. Millet
, Large deviations for the Boussinesq equations under random influences, Stochastic Process. Appl., 119 (2009)
, 2052-2081.
doi: 10.1016/j.spa.2008.10.004.![]() ![]() ![]() |
|
P. Dupuis and R. S. Ellis A Weak Convergence Approach to the Theory of Large Deviations, John Wiley & Sons, New York, 1997.
![]() ![]() |
|
A. C. Eringen
, Simple microfluids, Int. J. Engng. Sci., 2 (1964)
, 205-217.
doi: 10.1016/0020-7225(64)90005-9.![]() ![]() ![]() |
|
A. C. Eringen
, Theory of micropolar fluids, J. Math. Mech., 16 (1966)
, 1-18.
![]() ![]() |
|
F. Flandoli
and D. Gatarek
, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Relat. Fields, 102 (1995)
, 367-391.
doi: 10.1007/BF01192467.![]() ![]() ![]() |
|
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Third Edition, Springer, Heidelberg, New York, Dordrecht, London, 2012.
![]() ![]() |
|
G. P. Galdi
and S. Rionero
, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Engng. Sci., 15 (1977)
, 105-108.
doi: 10.1016/0020-7225(77)90025-8.![]() ![]() ![]() |
|
T. Hmidi
, S. Keraani
and R. Rousset
, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, J. Differential Equations, 249 (2010)
, 2147-2174.
doi: 10.1016/j.jde.2010.07.008.![]() ![]() ![]() |
|
I. Karatzas and S. E. Shreve,
Brownian Motion and Stochastic Calculus, Third Edition, Springer, New York, 1991.
![]() ![]() |
|
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, United Kingdom, 1990.
![]() ![]() |
|
J. L. Lions, Quelquels Méthodes de Réesolution des Problémes aux Limites Non Linéaires, Dunod, Gauthiers-Villars, Paris, 1969.
![]() ![]() |
|
G. Lukaszewicz,
Micropolar Fluids, Theory and Applications, Birkh mat $\ddot h$ rmauser, Boston, 1999.
![]() ![]() |
|
S. J. A. Malham, Regularity Assumptions and Length Scales for the Navier-Stokes Equations, Ph. D thesis, University of London, 1993.
![]() |
|
U. Manna
, S. S. Sritharan
and P. Sundar
, Large deviations for the stochastic shell model of turbulence, NoDEA Nonlinear Differential Equations Appl., 16 (2009)
, 493-521.
doi: 10.1007/s00030-009-0023-z.![]() ![]() ![]() |
|
J.-L. Menaldi
and S. Sritharan
, Stochastic 2-D Navier-Stokes equation, Appl. Math. Optim., 46 (2002)
, 31-53.
doi: 10.1007/s00245-002-0734-6.![]() ![]() ![]() |
|
E. E. Ortega-Torres
and M. A. Rojas-Medar
, Magneto-micropolar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999)
, 109-125.
doi: 10.1155/S1085337599000287.![]() ![]() ![]() |
|
M. Röckner
, B. Schmuland
and X. Zhang
, Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Cond. Matt. Phys., 11 (2008)
, 247-259.
![]() |
|
M. A. Rojas-Medar
, Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997)
, 301-319.
doi: 10.1002/mana.19971880116.![]() ![]() ![]() |
|
M. Sango
, Density dependent stochastic Navier-Stokes equations with non-Lipschitz random forcing, Rev. Math. Phys., 22 (2010)
, 669-697.
doi: 10.1142/S0129055X10004041.![]() ![]() ![]() |
|
A. V. Skorokhod
, Limit theorems for stochastic processes, Theory Probab. Appl., 1 (1956)
, 261-290.
doi: 10.1137/1101022.![]() ![]() |
|
S. S. Sritharan
and P. Sundar
, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise, Stochastic Process. Appl., 116 (2006)
, 1636-1659.
doi: 10.1016/j.spa.2006.04.001.![]() ![]() ![]() |
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer-Verlag New York, Inc., 1997.
![]() ![]() |
|
K. Yamazaki
, 3-D stochastic micropolar and magneto-micropolar fluid systems with non-Lipschitz multiplicative noise, Commun. Stoch. Anal., 8 (2014)
, 413-437.
![]() ![]() |
|
K. Yamazaki
, Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity, Discrete Contin. Dyn. Syst., 35 (2015)
, 2193-2207.
doi: 10.3934/dcds.2015.35.2193.![]() ![]() ![]() |
|
K. Yamazaki
, Recent developments on the micropolar and magneto-micropolar fluid systems: Deterministic and stochastic perspectives, in Stochastic Equations for Complex Systems: Theoretical and Computational Topics (eds. S. Heinz and H. Bessaih), Springer International Publishing, (2015)
, 85-103.
doi: 10.1007/978-3-319-18206-3_4.![]() ![]() |
|
K. Yamazaki
, Global martingale solution to the stochastic nonhomogeneous magnetohydrodynamics system, Adv. Differential Equations, 21 (2016)
, 1085-1116.
![]() ![]() |
|
K. Yamazaki
, Exponential convergence of the stochastic micropolar and magneto-micropolar fluid systems, Commun. Stoch. Anal., 10 (2016)
, 271-295.
![]() ![]() |