August  2018, 23(6): 2457-2473. doi: 10.3934/dcdsb.2018055

Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise

Department of Mathematics, Hokkaido university, Sapporo, Hokkaido, 060-0808, Japan

Received  April 2017 Revised  July 2017 Published  February 2018

We consider the perturbed dynamical system applied to non expanding piecewise linear maps on $[0, 1]$ which describe simplified dynamics of a single neuron. It is known that the Markov operator generated by this perturbed system has asymptotic periodicity with period $n≥1$. In this paper, we give a sufficient condition for $n>1$, asymptotic periodicity, and for $n = 1$, asymptotic stability. That is, we show that there exists a threshold of noises $θ_{*}$ such that the Markov operator generated by this perturbed system displays asymptotic periodicity (asymptotic stability) if a maximum value of noises is less (greater) than $θ_{*}$. This result indicates that an existence of phenomenon called mode-locking is mathematically clarified for this perturbed system.

Citation: Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055
References:
[1]

T.M.Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York-Heidelberg, 1976. doi: 10.1007/978-1-4612-0999-7.  Google Scholar

[2]

J. Berstel, Recent results on Sturmian words, In Developments in Language Theory, 2 (1996), 13-24.  doi: 10.1142/9789814531153.  Google Scholar

[3]

J. Berstel, Sturmian and episturmian words. In Algebraic informatics, Springer Berlin Heidelberg, (2007), 23-47.  doi: 10.1007/978-3-540-75414-5_2.  Google Scholar

[4]

V. BerthéA. De Luca and C. Reutenauer, On an involution of Christoffel words and Sturmian morphisms, European Journal of Combinatorics, 29 (2008), 535-553.  doi: 10.1016/j.ejc.2007.03.001.  Google Scholar

[5]

G. I. BischiL. Gardini and F. Tramontana, Bifurcation curves in discontinuous maps, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 249-267.  doi: 10.3934/dcdsb.2010.13.249.  Google Scholar

[6]

T. C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull, 36 (1993), 15-21.  doi: 10.4153/CMB-1993-003-6.  Google Scholar

[7]

E. R. Caianiello, Outline of a theory of thought-processes and thinking machines, Journal of Theoretical Biology, 1 (1961), 204-235.  doi: 10.1016/0022-5193(61)90046-7.  Google Scholar

[8]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, Journal of Statistical Physics, 46 (1987), 99-110.  doi: 10.1007/BF01010333.  Google Scholar

[9]

G.Essl, Circle maps as simple oscillators for complex behavior: I.Basics, In In Proceedings of the International Computer Music Conference (ICMC), 2006. Google Scholar

[10]

D. FarandaJ. M. FreitasP. Guiraud and S. Vaienti, Sampling local properties of attractors via extreme value theory, Chaos, Solitons & Fractals, 74 (2015), 55-66.  doi: 10.1016/j.chaos.2015.01.016.  Google Scholar

[11]

D.Faranda, J.M.Freitas, P.Guiraud and S.Vaienti, Statistical properties of random dynamical systems with contracting direction Journal of Physics A: Mathematical and Theoretical, 49 (2016), 204001, 17pp. doi: 10.1088/1751-8113/49/20/204001.  Google Scholar

[12]

L. GlassM. R. GuevaraA. Shrier and R. Perez, Bifurcation and chaos in a periodically stimulated cardiac oscillator, Physica D: Nonlinear Phenomena, 7 (1983), 89-101.  doi: 10.1016/0167-2789(83)90119-7.  Google Scholar

[13]

G. GómezJ. M. Mondelo and C. Simó, A collocation method for the numerical Fourier analysis of quasi-periodic functions. I. Numerical tests and examples, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 41-74.  doi: 10.3934/dcdsb.2010.14.41.  Google Scholar

[14]

T. Inoue, Invariant measures for position dependent random maps with continuous random parameters, Studia Math., 208 (2012), 11-29.  doi: 10.4064/sm208-1-2.  Google Scholar

[15]

Y. Iwata and T. Ogihara, Random perturbations of non-singular transformations on $[0, 1]$, Hokkaido Mathematical Journal, 42 (2013), 269-291.  doi: 10.14492/hokmj/1372859588.  Google Scholar

[16]

T.Kaijser, Stochastic perturbations of iterations of a simple, non-expanding, nonperiodic, piecewise linear, interval-map, preprint, arXiv:1606.00741. Google Scholar

[17]

J. P. Keener, Chaotic behavior in piecewise continuous difference equations, Transactions of the American Mathematical Society, 261 (1980), 589-604.  doi: 10.1090/S0002-9947-1980-0580905-3.  Google Scholar

[18]

A. LasotaT. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Transactions of the American Mathematical Society, 286 (1984), 751-764.  doi: 10.1090/S0002-9947-1984-0760984-4.  Google Scholar

[19]

A.Lasota and M.C.Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Second edition. Applied Mathematical Sciences, 97.Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[20]

M. McGuinnessY. HongD. Galletly and P. Larsen, Arnold tongues in human cardiorespiratory systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14 (2004), 1-6.  doi: 10.1063/1.1620990.  Google Scholar

[21]

J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Biological Cybernetics, 10 (1972), 155-164.  doi: 10.1007/BF00290514.  Google Scholar

[22]

F. Nakamura, Periodicity of non-expanding piecewise linear maps and effects of random noises, Dynamical Systems, 30 (2015), 450-467.  doi: 10.1080/14689367.2015.1073225.  Google Scholar

[23]

M.Oku and K.Aihara, Numerical analysis of transient and periodic dynamics in single and coupled Nagumo-Sato models International Journal of Bifurcation and Chaos, 22 (2012), 1230021, 15 pp. doi: 10.1142/S0218127412300212.  Google Scholar

[24]

A.Panchuk, I.Sushko, B.Schenke and V.Avrutin, Bifurcation structures in a bimodal piecewise linear map: Regular dynamics International Journal of Bifurcation and Chaos, 23 (2013), 1330040, 24pp. doi: 10.1142/S0218127413300401.  Google Scholar

[25]

N. Provatas and M.C. Mackey, Noise-induced asymptotic periodicity in a piecewise linear map, Journal of Statistical Physics, 63 (1991), 585-612.  doi: 10.1007/BF01029201.  Google Scholar

show all references

References:
[1]

T.M.Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York-Heidelberg, 1976. doi: 10.1007/978-1-4612-0999-7.  Google Scholar

[2]

J. Berstel, Recent results on Sturmian words, In Developments in Language Theory, 2 (1996), 13-24.  doi: 10.1142/9789814531153.  Google Scholar

[3]

J. Berstel, Sturmian and episturmian words. In Algebraic informatics, Springer Berlin Heidelberg, (2007), 23-47.  doi: 10.1007/978-3-540-75414-5_2.  Google Scholar

[4]

V. BerthéA. De Luca and C. Reutenauer, On an involution of Christoffel words and Sturmian morphisms, European Journal of Combinatorics, 29 (2008), 535-553.  doi: 10.1016/j.ejc.2007.03.001.  Google Scholar

[5]

G. I. BischiL. Gardini and F. Tramontana, Bifurcation curves in discontinuous maps, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 249-267.  doi: 10.3934/dcdsb.2010.13.249.  Google Scholar

[6]

T. C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull, 36 (1993), 15-21.  doi: 10.4153/CMB-1993-003-6.  Google Scholar

[7]

E. R. Caianiello, Outline of a theory of thought-processes and thinking machines, Journal of Theoretical Biology, 1 (1961), 204-235.  doi: 10.1016/0022-5193(61)90046-7.  Google Scholar

[8]

E. J. Ding and P. C. Hemmer, Exact treatment of mode locking for a piecewise linear map, Journal of Statistical Physics, 46 (1987), 99-110.  doi: 10.1007/BF01010333.  Google Scholar

[9]

G.Essl, Circle maps as simple oscillators for complex behavior: I.Basics, In In Proceedings of the International Computer Music Conference (ICMC), 2006. Google Scholar

[10]

D. FarandaJ. M. FreitasP. Guiraud and S. Vaienti, Sampling local properties of attractors via extreme value theory, Chaos, Solitons & Fractals, 74 (2015), 55-66.  doi: 10.1016/j.chaos.2015.01.016.  Google Scholar

[11]

D.Faranda, J.M.Freitas, P.Guiraud and S.Vaienti, Statistical properties of random dynamical systems with contracting direction Journal of Physics A: Mathematical and Theoretical, 49 (2016), 204001, 17pp. doi: 10.1088/1751-8113/49/20/204001.  Google Scholar

[12]

L. GlassM. R. GuevaraA. Shrier and R. Perez, Bifurcation and chaos in a periodically stimulated cardiac oscillator, Physica D: Nonlinear Phenomena, 7 (1983), 89-101.  doi: 10.1016/0167-2789(83)90119-7.  Google Scholar

[13]

G. GómezJ. M. Mondelo and C. Simó, A collocation method for the numerical Fourier analysis of quasi-periodic functions. I. Numerical tests and examples, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 41-74.  doi: 10.3934/dcdsb.2010.14.41.  Google Scholar

[14]

T. Inoue, Invariant measures for position dependent random maps with continuous random parameters, Studia Math., 208 (2012), 11-29.  doi: 10.4064/sm208-1-2.  Google Scholar

[15]

Y. Iwata and T. Ogihara, Random perturbations of non-singular transformations on $[0, 1]$, Hokkaido Mathematical Journal, 42 (2013), 269-291.  doi: 10.14492/hokmj/1372859588.  Google Scholar

[16]

T.Kaijser, Stochastic perturbations of iterations of a simple, non-expanding, nonperiodic, piecewise linear, interval-map, preprint, arXiv:1606.00741. Google Scholar

[17]

J. P. Keener, Chaotic behavior in piecewise continuous difference equations, Transactions of the American Mathematical Society, 261 (1980), 589-604.  doi: 10.1090/S0002-9947-1980-0580905-3.  Google Scholar

[18]

A. LasotaT. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Transactions of the American Mathematical Society, 286 (1984), 751-764.  doi: 10.1090/S0002-9947-1984-0760984-4.  Google Scholar

[19]

A.Lasota and M.C.Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Second edition. Applied Mathematical Sciences, 97.Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[20]

M. McGuinnessY. HongD. Galletly and P. Larsen, Arnold tongues in human cardiorespiratory systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14 (2004), 1-6.  doi: 10.1063/1.1620990.  Google Scholar

[21]

J. Nagumo and S. Sato, On a response characteristic of a mathematical neuron model, Biological Cybernetics, 10 (1972), 155-164.  doi: 10.1007/BF00290514.  Google Scholar

[22]

F. Nakamura, Periodicity of non-expanding piecewise linear maps and effects of random noises, Dynamical Systems, 30 (2015), 450-467.  doi: 10.1080/14689367.2015.1073225.  Google Scholar

[23]

M.Oku and K.Aihara, Numerical analysis of transient and periodic dynamics in single and coupled Nagumo-Sato models International Journal of Bifurcation and Chaos, 22 (2012), 1230021, 15 pp. doi: 10.1142/S0218127412300212.  Google Scholar

[24]

A.Panchuk, I.Sushko, B.Schenke and V.Avrutin, Bifurcation structures in a bimodal piecewise linear map: Regular dynamics International Journal of Bifurcation and Chaos, 23 (2013), 1330040, 24pp. doi: 10.1142/S0218127413300401.  Google Scholar

[25]

N. Provatas and M.C. Mackey, Noise-induced asymptotic periodicity in a piecewise linear map, Journal of Statistical Physics, 63 (1991), 585-612.  doi: 10.1007/BF01029201.  Google Scholar

Figure 1.  The region of the parameter space $(\alpha,\beta)$ in which $S_{\alpha,\beta}$ has a periodic point with period $n = 2,3,4,5$.
Figure 2.  Asymptotic periodicity illustrated. Here we show histograms obtain after iterating 5,000,000 initial points uniformly distributed on $[0,1]$ with $\alpha = 1/2, \beta = 4/7$, and $\theta = 1/14$ in Equation (2) for (a) $t = 200$; (b) $t = 201$; (c) $t = 202$; and (d) $t = 203$. A correspondence of the histograms for $t = 200$ and $t = 203$ indicates that the sequence of densities has period 3.
Figure 3.  Asymptotic stability illustrated. Here we show histograms obtain after 200 iterating 5,000,000 initial points uniformly distributed on $[0,1]$ with $\alpha = 1/2, \beta = 4/7$, and $\theta = 1/14+0.02$ in Equation (2).
Figure 4.  Asymptotic stability illustrated. Here we show histograms obtain after (a)200; (b)1,000; (c)10,000; (d)100,000 iterating 5,000,000 initial points uniformly distributed on $[0,1]$ with $\alpha = 1/2, \beta = 17/30$, and $\theta = 1/15$ in Equation (2).
[1]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[4]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[5]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[6]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[7]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[8]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[13]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[14]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[15]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[16]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[19]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021064

[20]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (115)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]