• Previous Article
    Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE
  • DCDS-B Home
  • This Issue
  • Next Article
    An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems
June  2018, 23(4): 1523-1533. doi: 10.3934/dcdsb.2018056

Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise

1. 

College of Science, National University of Defense Technology, Changsha, 410073, China

2. 

School of Mathematics, South China University of Technology, Guangzhou, 510640, China

* Corresponding author: Jianhua Huang

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: The authors are supported by NSF of China(11371367,11771449)

We present the time-spatial regularity of the nonlocal stochastic convolution for Caputo-type time fractional nonlocal Ornstein-Ulenbeck equations, and establish the existence and uniqueness of mild solutions for time fractional and space nonlocal stochastic Boussinesq equations driven by Gaussian white noise.

Citation: Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056
References:
[1]

C. BardosP. PenelU. Frisch and P. Sulem, Modifed dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598. Google Scholar

[2]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980. doi: 10.1016/j.jde.2015.04.008. Google Scholar

[3]

J. Debbi and M. Dozzi, On the solution of nonlinear stochastic fractional partial equations in one spatial dimension, Stoch. Proc. Appl., 115 (2005), 1764-1781. doi: 10.1016/j.spa.2005.06.001. Google Scholar

[4]

G. Da. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Google Scholar

[5]

A. Heibig and L. I. Lalade, Well-posedness of a linearized fractional derivative fluid model, J. Math. Anal. Appl., 380 (2011), 211-255. doi: 10.1016/j.jmaa.2011.02.047. Google Scholar

[6]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discre. Continu. Dynam. Syst.-B, 20 (2015), 2051-2067. doi: 10.3934/dcdsb.2015.20.2051. Google Scholar

[7]

J. Lions, Sur l'existence de solution des équation de Navier-Stokes, C. R. Acad. Sci. Pairs, 248 (1959), 2847-2849. Google Scholar

[8]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperrial College Press, London, 2010. Google Scholar

[9]

M. Shinbrot, Fractional derivatives of solutions of the Navier-stokes equations, Arch. Ration. Mech. Anal., 40 (1971), 139-154. Google Scholar

[10]

Y. WangJ. Xu and P. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlin. Anal., 135 (2016), 205-222. doi: 10.1016/j.na.2016.01.020. Google Scholar

[11]

C. Zeng and Q. Yang, Mild solution of time fractional Navier-Stokes equations driven by fractional Brownian motion, Preprint, 2017. doi: 10.1016/j.spa.2017.03.013. Google Scholar

[12]

Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Compu. Math. Appl., 73 (2017), 1016-1027. doi: 10.1016/j.camwa.2016.07.007. Google Scholar

[13]

Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Compu. Math. Appl., 73 (2017), 874-891. doi: 10.1016/j.camwa.2016.03.026. Google Scholar

show all references

References:
[1]

C. BardosP. PenelU. Frisch and P. Sulem, Modifed dissipativity for a nonlinear evolution equation arising in turbulence, Arch. Ration. Mech. Anal., 71 (1979), 237-256. doi: 10.1007/BF00280598. Google Scholar

[2]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980. doi: 10.1016/j.jde.2015.04.008. Google Scholar

[3]

J. Debbi and M. Dozzi, On the solution of nonlinear stochastic fractional partial equations in one spatial dimension, Stoch. Proc. Appl., 115 (2005), 1764-1781. doi: 10.1016/j.spa.2005.06.001. Google Scholar

[4]

G. Da. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Google Scholar

[5]

A. Heibig and L. I. Lalade, Well-posedness of a linearized fractional derivative fluid model, J. Math. Anal. Appl., 380 (2011), 211-255. doi: 10.1016/j.jmaa.2011.02.047. Google Scholar

[6]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discre. Continu. Dynam. Syst.-B, 20 (2015), 2051-2067. doi: 10.3934/dcdsb.2015.20.2051. Google Scholar

[7]

J. Lions, Sur l'existence de solution des équation de Navier-Stokes, C. R. Acad. Sci. Pairs, 248 (1959), 2847-2849. Google Scholar

[8]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperrial College Press, London, 2010. Google Scholar

[9]

M. Shinbrot, Fractional derivatives of solutions of the Navier-stokes equations, Arch. Ration. Mech. Anal., 40 (1971), 139-154. Google Scholar

[10]

Y. WangJ. Xu and P. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlin. Anal., 135 (2016), 205-222. doi: 10.1016/j.na.2016.01.020. Google Scholar

[11]

C. Zeng and Q. Yang, Mild solution of time fractional Navier-Stokes equations driven by fractional Brownian motion, Preprint, 2017. doi: 10.1016/j.spa.2017.03.013. Google Scholar

[12]

Y. Zhou and L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Compu. Math. Appl., 73 (2017), 1016-1027. doi: 10.1016/j.camwa.2016.07.007. Google Scholar

[13]

Y. Zhou and L. Peng, On the time-fractional Navier-Stokes equations, Compu. Math. Appl., 73 (2017), 874-891. doi: 10.1016/j.camwa.2016.03.026. Google Scholar

[1]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

[2]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050

[3]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058

[4]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 561-574. doi: 10.3934/dcdss.2020031

[5]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 519-537. doi: 10.3934/dcdss.2020029

[6]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

[7]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[8]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[9]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[10]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[11]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[12]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[13]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[14]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[15]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[16]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[17]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[18]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[19]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[20]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (71)
  • HTML views (289)
  • Cited by (1)

Other articles
by authors

[Back to Top]