• Previous Article
    Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity
  • DCDS-B Home
  • This Issue
  • Next Article
    Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise
June  2018, 23(4): 1535-1557. doi: 10.3934/dcdsb.2018058

Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Yangrong Li, Email: liyr@swu.edu.cn

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: This work is supported by National Natural Science Foundation of China grant 11571283 and Natural Science Foundation of Guizhou Province (KY[2016]103).

This paper is concerned with the robustness of a pullback attractor as the time tends to infinity. A pullback attractor is called forward (resp. backward) compact if the union over the future (resp. the past) is pre-compact. We prove that the forward (resp. backward) compactness is a necessary and sufficient condition such that a pullback attractor is upper semi-continuous to a compact set at positive (resp. negative) infinity, and also obtain the minimal limit-set. We further prove the lower semi-continuity of the pullback attractor and get the maximal limit-set at infinity. Some criteria for such robustness are established when the evolution process is forward or backward omega-limit compact. Those theoretical criteria are applied to prove semi-uniform compactness and robustness at infinity in pullback dynamics for a Ginzburg-Landau equation with variable coefficients and a forward or backward tempered nonlinearity.

Citation: Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058
References:
[1]

M. Anguiano and P. E. Kloeden, Asymptotic behaviour of the nonautonomous SIR equations with diffusion, Commun. Pure Appl. Anal., 13 (2014), 157-173.   Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Intern. J. Bifur. Chaos, 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Appl. Math. Sciences, Springer, New York, 2013.  Google Scholar

[7]

M. Carvalho and P. Varandas, (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms, J. Math. Anal. Appl., 434 (2016), 1123-1137.  doi: 10.1016/j.jmaa.2015.09.042.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimensions, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, volume 49, Providence, Rhode Island, 2002. doi: 10.1090/coll/049.  Google Scholar

[10]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[11]

H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput., 271 (2015), 777-789.  doi: 10.1016/j.amc.2015.09.031.  Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 304-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[13]

H. CuiY. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 6 (2016), 1081-1104.   Google Scholar

[14]

P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equations with spatially variable exponents, Commun. Pure Appl. Anal., 13 (2014), 2543-2557.  doi: 10.3934/cpaa.2014.13.2543.  Google Scholar

[15]

P. E. Kloeden, Upper semi continuity of attractors of delay differential equations in the delay, Bull. Austra. Math. Soc., 73 (2006), 299-306.  doi: 10.1017/S0004972700038880.  Google Scholar

[16]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[17]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, 176, American Mathematical Society, Providence, 2011.  Google Scholar

[18]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.  Google Scholar

[19]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[21]

Y. LiR. Wang and J. Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. B, 22 (2017), 2569-2586.  doi: 10.3934/dcdsb.2017092.  Google Scholar

[22]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[23]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations, Discrete Contin. Dyn.Syst. S, 9 (2016), 1939-1957.  doi: 10.3934/dcdss.2016079.  Google Scholar

[24]

L. Liu and X. Fu, Existence and upper semicontinuity of (L-2, L-q) pullback attractors for a stochastic p-Laplacian equation, Commun. Pure Appl. Anal., 16 (2017), 443-473.  doi: 10.3934/cpaa.2017023.  Google Scholar

[25]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[26]

S. H. Park and J. Y. Park, Pullback attractor for a non-autonomous modified Swift-Hohenberg equation, Comput. Math. Appl., 67 (2014), 542-548.  doi: 10.1016/j.camwa.2013.11.011.  Google Scholar

[27]

J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differ. Equ., 186 (2002), 652-669.  doi: 10.1016/S0022-0396(02)00038-4.  Google Scholar

[28]

E. O. Roxin, Stability in general control systems, J. Differ. Equ., 1 (1965), 115-150.  doi: 10.1016/0022-0396(65)90015-X.  Google Scholar

[29]

J. SimsenM. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699.  doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[30]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with Nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.  Google Scholar

[32]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force, J. Differ. Equ., 251 (2011), 2209-2225.  doi: 10.1016/j.jde.2011.07.008.  Google Scholar

[33]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[34]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electric J. Differ. Equ., 139 (2009), 1-18.   Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst. B, 34 (2014), 269-300.   Google Scholar

[36]

G. WangB. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.  doi: 10.1016/j.amc.2007.09.029.  Google Scholar

[37]

Y. Wang, On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems, Discrete Contin. Dyn. Syst. B, 21 (2016), 3669-3708.  doi: 10.3934/dcdsb.2016116.  Google Scholar

[38]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differ. Equ., 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[39]

J. YinA. Gu and Y. Li, Backwards compact attractors for non-autonomous damped 3D Navier-Stokes equations, Dynamics of PDE, 14 (2017), 201-218.  doi: 10.4310/DPDE.2017.v14.n2.a4.  Google Scholar

[40]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207.  doi: 10.1016/j.jmaa.2017.01.064.  Google Scholar

[41]

J. YinY. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 74 (2017), 744-758.  doi: 10.1016/j.camwa.2017.05.015.  Google Scholar

[42]

S. Zhou and Y. Bai, Random attractor and upper semi-continuity for Zakharov lattice system with multiplicative white noise, J. Differ. Equ. Appl., 20 (2014), 312-338.  doi: 10.1080/10236198.2013.845663.  Google Scholar

[43]

V. Zvyagin and S. Kondratyev, Pullback attractors of the Jeffreys-Oldroyd equations, J. Differ. Equ., 260 (2016), 5026-5042.  doi: 10.1016/j.jde.2015.11.038.  Google Scholar

show all references

References:
[1]

M. Anguiano and P. E. Kloeden, Asymptotic behaviour of the nonautonomous SIR equations with diffusion, Commun. Pure Appl. Anal., 13 (2014), 157-173.   Google Scholar

[2]

J. M. Arrieta and A. N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differ. Equ., 199 (2004), 143-178.  doi: 10.1016/j.jde.2003.09.004.  Google Scholar

[3]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Intern. J. Bifur. Chaos, 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967-1976.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[5]

T. CaraballoG. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Appl. Math. Sciences, Springer, New York, 2013.  Google Scholar

[7]

M. Carvalho and P. Varandas, (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms, J. Math. Anal. Appl., 434 (2016), 1123-1137.  doi: 10.1016/j.jmaa.2015.09.042.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimensions, J. Math. Pures Appl., 73 (1994), 279-333.   Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, volume 49, Providence, Rhode Island, 2002. doi: 10.1090/coll/049.  Google Scholar

[10]

H. CuiJ. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 140 (2016), 208-235.  doi: 10.1016/j.na.2016.03.012.  Google Scholar

[11]

H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput., 271 (2015), 777-789.  doi: 10.1016/j.amc.2015.09.031.  Google Scholar

[12]

H. CuiY. Li and J. Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal., 128 (2015), 304-324.  doi: 10.1016/j.na.2015.08.009.  Google Scholar

[13]

H. CuiY. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 6 (2016), 1081-1104.   Google Scholar

[14]

P. E. Kloeden and J. Simsen, Pullback attractors for non-autonomous evolution equations with spatially variable exponents, Commun. Pure Appl. Anal., 13 (2014), 2543-2557.  doi: 10.3934/cpaa.2014.13.2543.  Google Scholar

[15]

P. E. Kloeden, Upper semi continuity of attractors of delay differential equations in the delay, Bull. Austra. Math. Soc., 73 (2006), 299-306.  doi: 10.1017/S0004972700038880.  Google Scholar

[16]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond, 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[17]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, 176, American Mathematical Society, Providence, 2011.  Google Scholar

[18]

Y. LiH. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal., 109 (2014), 33-44.  doi: 10.1016/j.na.2014.06.013.  Google Scholar

[19]

Y. LiA. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differ. Equ., 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differ. Equ., 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[21]

Y. LiR. Wang and J. Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. B, 22 (2017), 2569-2586.  doi: 10.3934/dcdsb.2017092.  Google Scholar

[22]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[23]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations, Discrete Contin. Dyn.Syst. S, 9 (2016), 1939-1957.  doi: 10.3934/dcdss.2016079.  Google Scholar

[24]

L. Liu and X. Fu, Existence and upper semicontinuity of (L-2, L-q) pullback attractors for a stochastic p-Laplacian equation, Commun. Pure Appl. Anal., 16 (2017), 443-473.  doi: 10.3934/cpaa.2017023.  Google Scholar

[25]

G. Lukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644.  doi: 10.1142/S0218127410027258.  Google Scholar

[26]

S. H. Park and J. Y. Park, Pullback attractor for a non-autonomous modified Swift-Hohenberg equation, Comput. Math. Appl., 67 (2014), 542-548.  doi: 10.1016/j.camwa.2013.11.011.  Google Scholar

[27]

J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differ. Equ., 186 (2002), 652-669.  doi: 10.1016/S0022-0396(02)00038-4.  Google Scholar

[28]

E. O. Roxin, Stability in general control systems, J. Differ. Equ., 1 (1965), 115-150.  doi: 10.1016/0022-0396(65)90015-X.  Google Scholar

[29]

J. SimsenM. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems, J. Math. Anal. Appl., 413 (2014), 685-699.  doi: 10.1016/j.jmaa.2013.12.019.  Google Scholar

[30]

C. SunD. Cao and J. Duan, Uniform attractors for nonautonomous wave equations with Nonlinear damping, SIAM J. Appl. Dyn. Syst., 6 (2007), 293-318.  doi: 10.1137/060663805.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.  Google Scholar

[32]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force, J. Differ. Equ., 251 (2011), 2209-2225.  doi: 10.1016/j.jde.2011.07.008.  Google Scholar

[33]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[34]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electric J. Differ. Equ., 139 (2009), 1-18.   Google Scholar

[35]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Disrete Continu. Dyn. Syst. B, 34 (2014), 269-300.   Google Scholar

[36]

G. WangB. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.  doi: 10.1016/j.amc.2007.09.029.  Google Scholar

[37]

Y. Wang, On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems, Discrete Contin. Dyn. Syst. B, 21 (2016), 3669-3708.  doi: 10.3934/dcdsb.2016116.  Google Scholar

[38]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differ. Equ., 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[39]

J. YinA. Gu and Y. Li, Backwards compact attractors for non-autonomous damped 3D Navier-Stokes equations, Dynamics of PDE, 14 (2017), 201-218.  doi: 10.4310/DPDE.2017.v14.n2.a4.  Google Scholar

[40]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207.  doi: 10.1016/j.jmaa.2017.01.064.  Google Scholar

[41]

J. YinY. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 74 (2017), 744-758.  doi: 10.1016/j.camwa.2017.05.015.  Google Scholar

[42]

S. Zhou and Y. Bai, Random attractor and upper semi-continuity for Zakharov lattice system with multiplicative white noise, J. Differ. Equ. Appl., 20 (2014), 312-338.  doi: 10.1080/10236198.2013.845663.  Google Scholar

[43]

V. Zvyagin and S. Kondratyev, Pullback attractors of the Jeffreys-Oldroyd equations, J. Differ. Equ., 260 (2016), 5026-5042.  doi: 10.1016/j.jde.2015.11.038.  Google Scholar

[1]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (104)
  • HTML views (320)
  • Cited by (4)

Other articles
by authors

[Back to Top]