June  2018, 23(4): 1559-1579. doi: 10.3934/dcdsb.2018059

Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity

1. 

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China

2. 

Department of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China

* Corresponding author: S. Guo

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: The second author is supported by NSF of China (Grants No. 11671123).

This paper is concerned with a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. By analyzing the sign of the principal eigenvalue corresponding to each semi-trivial solution, we obtain the linear stability and global attractivity of the semi-trivial solution. In addition, an attracting region was obtained by means of the method of upper and lower solutions.

Citation: Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059
References:
[1]

W.G. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure, Mathematical Biosciences, 101 (1990), 139-153.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, Journal of Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, 2003.  Google Scholar

[4]

S. Chen and J. Shi, Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, Journal of Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, Journal of Mathematical Analysis and Applications, 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[6]

H. I. Freedman and X. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, Journal of Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[7]

P. Georgescu and Y.-H. Hsieh, Global dynamics of a predator-prey model with stage structure for the predator, SIAM Journal on Applied Mathematics, 67 (2007), 1379-1395.  doi: 10.1137/060670377.  Google Scholar

[8]

S.A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM Journal on Applied Mathematics, 65 (2004), 550-566.  doi: 10.1137/S0036139903436613.  Google Scholar

[9]

S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, Journal of Differential Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.  Google Scholar

[10]

S. Guo, Spatio-temporal patterns in a diffusive model with non-local delay effect, IMA Journal of Applied Mathematics, 82 (2017), 864-908.  doi: 10.1093/imamat/hxx018.  Google Scholar

[11]

S. GuoY. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays, Journal of Differential Equations, 244 (2008), 444-486.  doi: 10.1016/j.jde.2007.09.008.  Google Scholar

[12]

S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with dirichlet boundary condition, Journal of Nonlinear Science, 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.  Google Scholar

[13]

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Springer, 2013.  Google Scholar

[14]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[15]

X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition--diffusion system I: Heterogeneity vs. homogeneity, Journal of Differential Equations, 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[16]

X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Communications on Pure and Applied Mathematics, 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[17]

W. Huang, Global dynamics for a reaction--diffusion equation with time delay, Journal of Differential Equations, 143 (1998), 293-326.  doi: 10.1006/jdeq.1997.3374.  Google Scholar

[18]

K.-Y. Lam and W. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM Journal on Applied Mathematics, 72 (2012), 1695-1712.  doi: 10.1137/120869481.  Google Scholar

[19]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.   Google Scholar

[20]

J. Li and Z. Ma, Stability switches in a class of characteristic equations with delay-dependent parameters, Nonlinear Analysis: Real World Applications, 5 (2004), 389-408.  doi: 10.1016/j.nonrwa.2003.06.001.  Google Scholar

[21]

Z. LiM. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 173-187.   Google Scholar

[22]

Y. Lin, X. Xie, F. Chen and T. Li, Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Advances in Difference Equations, 2016 (2016), 19pp.  Google Scholar

[23]

S. LiuL. ChenG. Luo and Y. Jiang, Asymptotic behaviors of competitive Lotka-Volterra system with stage structure, Journal of Mathematical Analysis and Applications, 271 (2002), 124-138.  doi: 10.1016/S0022-247X(02)00103-8.  Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Transactions of the American Mathematical Society, 321 (1990), 1-44.   Google Scholar

[25]

C. V. Pao, Coupled nonlinear parabolic systems with time delays, Journal of Mathematical Analysis and Applications, 196 (1995), 237-265.  doi: 10.1006/jmaa.1995.1408.  Google Scholar

[26]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, Journal of Mathematical Analysis and Applications, 198 (1996), 751-779.  doi: 10.1006/jmaa.1996.0111.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.  Google Scholar

[28]

Y. Qu and J. Wei, Bifurcation analysis in a predator--prey system with stage-structure and harvesting, Journal of the Franklin Institute, 347 (2010), 1097-1113.  doi: 10.1016/j.jfranklin.2010.03.017.  Google Scholar

[29]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[30]

X. Song and L. Chen, Optimal harvesting and stability for a predator-prey system with stage structure, Acta Mathematicae Applicatae Sinica, 18 (2002), 423-430.  doi: 10.1007/s102550200042.  Google Scholar

[31]

H.R. Thieme and X. Zhao, A non-local delayed and diffusive predator--prey model, Nonlinear Analysis: Real World Applications, 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[32]

C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Transactions of the American Mathematical Society, 200 (1974), 395-418.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[33]

J. Wu, Theory and Applications of Partial Functional Differential Equations, volume 119. Springer Science & Business Media, 1996.  Google Scholar

[34]

M. Xiao and J. Cao, Stability and Hopf bifurcation in a delayed competitive web sites model, Physics Letters A, 353 (2006), 138-150.   Google Scholar

[35]

S. Yan and S. Guo, Bifurcation phenomena in a {L}otka-{V}olterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos, 27 (2017), 1750105, 24pp.  Google Scholar

[36]

S. Yan and S. Guo, Stability analysis of a stage structure model with spatiotemporal delay effect, Computers & Mathematics with Applications, 73 (2017), 310-326.  doi: 10.1016/j.camwa.2016.11.029.  Google Scholar

[37]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, Journal of Differential Equations, 245 (2008), 3376-3388.  doi: 10.1016/j.jde.2008.03.007.  Google Scholar

show all references

References:
[1]

W.G. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure, Mathematical Biosciences, 101 (1990), 139-153.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, Journal of Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley & Sons, 2003.  Google Scholar

[4]

S. Chen and J. Shi, Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, Journal of Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.  Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, Journal of Mathematical Analysis and Applications, 254 (2001), 433-463.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[6]

H. I. Freedman and X. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, Journal of Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[7]

P. Georgescu and Y.-H. Hsieh, Global dynamics of a predator-prey model with stage structure for the predator, SIAM Journal on Applied Mathematics, 67 (2007), 1379-1395.  doi: 10.1137/060670377.  Google Scholar

[8]

S.A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM Journal on Applied Mathematics, 65 (2004), 550-566.  doi: 10.1137/S0036139903436613.  Google Scholar

[9]

S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, Journal of Differential Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.  Google Scholar

[10]

S. Guo, Spatio-temporal patterns in a diffusive model with non-local delay effect, IMA Journal of Applied Mathematics, 82 (2017), 864-908.  doi: 10.1093/imamat/hxx018.  Google Scholar

[11]

S. GuoY. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays, Journal of Differential Equations, 244 (2008), 444-486.  doi: 10.1016/j.jde.2007.09.008.  Google Scholar

[12]

S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with dirichlet boundary condition, Journal of Nonlinear Science, 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.  Google Scholar

[13]

S. Guo and J. Wu, Bifurcation Theory of Functional Differential Equations, Springer, 2013.  Google Scholar

[14]

S. Guo and S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, Journal of Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.  Google Scholar

[15]

X. He and W. Ni, The effects of diffusion and spatial variation in Lotka-Volterra competition--diffusion system I: Heterogeneity vs. homogeneity, Journal of Differential Equations, 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[16]

X. He and W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial heterogeneity I, Communications on Pure and Applied Mathematics, 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[17]

W. Huang, Global dynamics for a reaction--diffusion equation with time delay, Journal of Differential Equations, 143 (1998), 293-326.  doi: 10.1006/jdeq.1997.3374.  Google Scholar

[18]

K.-Y. Lam and W. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM Journal on Applied Mathematics, 72 (2012), 1695-1712.  doi: 10.1137/120869481.  Google Scholar

[19]

D. Li and S. Guo, Bifurcation and stability of a Mimura-Tsujikawa model with nonlocal delay effect, Mathematical Methods in the Applied Sciences, 40 (2017), 2219-2247.   Google Scholar

[20]

J. Li and Z. Ma, Stability switches in a class of characteristic equations with delay-dependent parameters, Nonlinear Analysis: Real World Applications, 5 (2004), 389-408.  doi: 10.1016/j.nonrwa.2003.06.001.  Google Scholar

[21]

Z. LiM. Han and F. Chen, Global stability of a predator-prey system with stage structure and mutual interference, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 173-187.   Google Scholar

[22]

Y. Lin, X. Xie, F. Chen and T. Li, Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes, Advances in Difference Equations, 2016 (2016), 19pp.  Google Scholar

[23]

S. LiuL. ChenG. Luo and Y. Jiang, Asymptotic behaviors of competitive Lotka-Volterra system with stage structure, Journal of Mathematical Analysis and Applications, 271 (2002), 124-138.  doi: 10.1016/S0022-247X(02)00103-8.  Google Scholar

[24]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Transactions of the American Mathematical Society, 321 (1990), 1-44.   Google Scholar

[25]

C. V. Pao, Coupled nonlinear parabolic systems with time delays, Journal of Mathematical Analysis and Applications, 196 (1995), 237-265.  doi: 10.1006/jmaa.1995.1408.  Google Scholar

[26]

C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, Journal of Mathematical Analysis and Applications, 198 (1996), 751-779.  doi: 10.1006/jmaa.1996.0111.  Google Scholar

[27]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.  Google Scholar

[28]

Y. Qu and J. Wei, Bifurcation analysis in a predator--prey system with stage-structure and harvesting, Journal of the Franklin Institute, 347 (2010), 1097-1113.  doi: 10.1016/j.jfranklin.2010.03.017.  Google Scholar

[29]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.  Google Scholar

[30]

X. Song and L. Chen, Optimal harvesting and stability for a predator-prey system with stage structure, Acta Mathematicae Applicatae Sinica, 18 (2002), 423-430.  doi: 10.1007/s102550200042.  Google Scholar

[31]

H.R. Thieme and X. Zhao, A non-local delayed and diffusive predator--prey model, Nonlinear Analysis: Real World Applications, 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[32]

C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Transactions of the American Mathematical Society, 200 (1974), 395-418.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[33]

J. Wu, Theory and Applications of Partial Functional Differential Equations, volume 119. Springer Science & Business Media, 1996.  Google Scholar

[34]

M. Xiao and J. Cao, Stability and Hopf bifurcation in a delayed competitive web sites model, Physics Letters A, 353 (2006), 138-150.   Google Scholar

[35]

S. Yan and S. Guo, Bifurcation phenomena in a {L}otka-{V}olterra model with cross-diffusion and delay effect, International Journal of Bifurcation and Chaos, 27 (2017), 1750105, 24pp.  Google Scholar

[36]

S. Yan and S. Guo, Stability analysis of a stage structure model with spatiotemporal delay effect, Computers & Mathematics with Applications, 73 (2017), 310-326.  doi: 10.1016/j.camwa.2016.11.029.  Google Scholar

[37]

T. Yi and X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case, Journal of Differential Equations, 245 (2008), 3376-3388.  doi: 10.1016/j.jde.2008.03.007.  Google Scholar

Figure 1.  Solutions of model (7) with $\tau = 0.3<\tau_*$ tend to the semi-trivial steady state solution $(\theta_{d_1,\alpha,0},0)$.
Figure 2.  Solutions of model (7) with $\tau = 3>\tau^*$ tend to the semi-trivial steady state solution $(0, \theta_{d_2,r})$.
Figure 3.  Solutions of model (7) with $\tau = 1.485\in(\ln\dfrac{c\bar{\alpha}}{\bar{r}}, \ln\dfrac{\bar{\alpha}}{a\bar{r}})$ tend to a positive steady state.
[1]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[2]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[3]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[4]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[5]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[6]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[7]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[10]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[11]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[14]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[15]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[16]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[17]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[18]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[20]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (237)
  • HTML views (361)
  • Cited by (2)

Other articles
by authors

[Back to Top]