• Previous Article
    Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity
June  2018, 23(4): 1581-1600. doi: 10.3934/dcdsb.2018062

Two codimension-two bifurcations of a second-order difference equation from macroeconomics

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guangdong 524048, China

* Corresponding author: sf_deng@sohu.com, sfdeng@vt.edu

Received  May 2017 Revised  August 2017 Published  June 2018 Early access  February 2018

Fund Project: The paper was supported by the National Natural Science Foundation of China (No. 11371314 and No. 11771197), the Guangdong Natural Science Foundation of China (No. 2017A030313030), the High-Level Talent Project of Colleges and Universities in Guangdong Province (No. QBS201501), the Startup Foundation for Doctors of Lingnan Normal University (No. ZL1605), and the Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2015QYJ06).

In this paper we mainly investigate two codimension-two bifurcations of a second-order difference equation from macroeconomics. Applying the center manifold theorem and the normal form analysis, we firstly give the parameter conditions for the generalized flip bifurcation, and prove that the system does not produce a strong resonance. Then, we compute the normal forms to obtain the parameter conditions for the Neimark-Sacker bifurcation, from which we present the conditions for the Chenciner bifurcation. In order to verify the correctness of our results, we also numerically simulate a half stable invariant circle and two invariant circles, one stable and one unstable, arising from the Chenciner bifurcation.

Citation: Jiyu Zhong, Shengfu Deng. Two codimension-two bifurcations of a second-order difference equation from macroeconomics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1581-1600. doi: 10.3934/dcdsb.2018062
References:
[1]

D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge University, Cambridge, 1990.  Google Scholar

[2]

J. Carr, Application of Center Manifold Theory, Springer, New York, 1981. doi: 10.1007/978-1-4612-5929-9.  Google Scholar

[3]

S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University, Cambridge, 1994.  Google Scholar

[4]

S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer, New York, 2005. doi: 10.1007/978-1-4757-9168-6.  Google Scholar

[5]

H. A. El-Morshedy, On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics, J. Differ. Equ. Appl., 17 (2011), 1643-1650.  doi: 10.1080/10236191003730548.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors, Springer, New York, 1983.  Google Scholar

[7]

G. Iooss, Bifurcation of Maps and Applications, Mathematical Studies, 36, North Holland, Amsterdam, 1979.  Google Scholar

[8]

C. M. Kent and H. Sedaghat, Global stability and boundedness in $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 10 (2004), 1215-1227.  doi: 10.1080/10236190410001652829.  Google Scholar

[9]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer, New York, 1998. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[10]

S. Li and W. Zhang, Bifurcations in a second-order difference equation from macroeconomics, J. Differ. Equ. Appl., 14 (2008), 91-104.  doi: 10.1080/10236190701483145.  Google Scholar

[11]

J. LiuZ. Yu and W. Zhang, Invariant curves for a second-order difference equation modelled from macroeconomics, J. Differ. Equ. Appl., 21 (2015), 757-773.  doi: 10.1080/10236198.2015.1040008.  Google Scholar

[12]

P. A. Samuelson, Interaction between themultiplier analysis and the principle of acceleration, Rev. Econ. Stat., 21 (1939), 75-78.  doi: 10.2307/1927758.  Google Scholar

[13]

H. Sedaghat, A class of nonlinear second-order difference equations from macroeconomics, Nonlinear Anal., 29 (1997), 593-603.  doi: 10.1016/S0362-546X(96)00054-5.  Google Scholar

[14]

H. Sedaghat, Regarding the equation $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 8 (2002), 667-671.  doi: 10.1080/10236190290032525.  Google Scholar

[15]

H. Sedaghat, Global attractivity, oscillations and chaos in a class of nonlinear, second order difference equations, Cubo, 7 (2005), 89-110.   Google Scholar

[16]

I. Sushko, T. Puu and L. Gardini, A Goodwin-type model with cubic investment function, in Business cycle dynamics: models and tools (eds. T. Puu and I. Suchko), Springer, (2006), 299-316. doi: 10.1007/3-540-32168-3_12.  Google Scholar

[17]

W. Wang, Analytic invariant curves of nonlinear second order equation, Acta Mathematica Scientia, 29 (2009), 415-426.  doi: 10.1016/S0252-9602(09)60041-2.  Google Scholar

[18]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003. doi: 10.1007/b97481.  Google Scholar

show all references

References:
[1]

D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge University, Cambridge, 1990.  Google Scholar

[2]

J. Carr, Application of Center Manifold Theory, Springer, New York, 1981. doi: 10.1007/978-1-4612-5929-9.  Google Scholar

[3]

S. -N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University, Cambridge, 1994.  Google Scholar

[4]

S. Elaydi, An Introduction to Difference Equations, 3rd edition, Springer, New York, 2005. doi: 10.1007/978-1-4757-9168-6.  Google Scholar

[5]

H. A. El-Morshedy, On the global attractivity and oscillations in a class of second-order difference equations from macroeconomics, J. Differ. Equ. Appl., 17 (2011), 1643-1650.  doi: 10.1080/10236191003730548.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors, Springer, New York, 1983.  Google Scholar

[7]

G. Iooss, Bifurcation of Maps and Applications, Mathematical Studies, 36, North Holland, Amsterdam, 1979.  Google Scholar

[8]

C. M. Kent and H. Sedaghat, Global stability and boundedness in $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 10 (2004), 1215-1227.  doi: 10.1080/10236190410001652829.  Google Scholar

[9]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edition, Springer, New York, 1998. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[10]

S. Li and W. Zhang, Bifurcations in a second-order difference equation from macroeconomics, J. Differ. Equ. Appl., 14 (2008), 91-104.  doi: 10.1080/10236190701483145.  Google Scholar

[11]

J. LiuZ. Yu and W. Zhang, Invariant curves for a second-order difference equation modelled from macroeconomics, J. Differ. Equ. Appl., 21 (2015), 757-773.  doi: 10.1080/10236198.2015.1040008.  Google Scholar

[12]

P. A. Samuelson, Interaction between themultiplier analysis and the principle of acceleration, Rev. Econ. Stat., 21 (1939), 75-78.  doi: 10.2307/1927758.  Google Scholar

[13]

H. Sedaghat, A class of nonlinear second-order difference equations from macroeconomics, Nonlinear Anal., 29 (1997), 593-603.  doi: 10.1016/S0362-546X(96)00054-5.  Google Scholar

[14]

H. Sedaghat, Regarding the equation $x_{n+1} = cx_n+f(x_n-x_{n-1})$, J. Differ. Equ. Appl., 8 (2002), 667-671.  doi: 10.1080/10236190290032525.  Google Scholar

[15]

H. Sedaghat, Global attractivity, oscillations and chaos in a class of nonlinear, second order difference equations, Cubo, 7 (2005), 89-110.   Google Scholar

[16]

I. Sushko, T. Puu and L. Gardini, A Goodwin-type model with cubic investment function, in Business cycle dynamics: models and tools (eds. T. Puu and I. Suchko), Springer, (2006), 299-316. doi: 10.1007/3-540-32168-3_12.  Google Scholar

[17]

W. Wang, Analytic invariant curves of nonlinear second order equation, Acta Mathematica Scientia, 29 (2009), 415-426.  doi: 10.1016/S0252-9602(09)60041-2.  Google Scholar

[18]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003. doi: 10.1007/b97481.  Google Scholar

Figure 1.  Bifurcation diagram for $q_5>0$
Figure 2.  Bifurcation diagram of system (20)
Figure 3.  Bifurcation diagram for $q_5<0$
Figure 4.  Bifurcation diagram for $\mathcal{L}>0$
Figure 5.  Chenciner bifurcation of system (44) in the case $c_5(0)<0$
Figure 6.  Chenciner bifurcation of system (3) in the case $\mathcal{L}<0$
Figure 7.  Invariant circles arising from Chenciner bifurcation
[1]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[2]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[3]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[4]

Andrus Giraldo, Bernd Krauskopf, Hinke M. Osinga. Computing connecting orbits to infinity associated with a homoclinic flip bifurcation. Journal of Computational Dynamics, 2020, 7 (2) : 489-510. doi: 10.3934/jcd.2020020

[5]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[6]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

[7]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

[8]

Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237

[9]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[10]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[11]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[12]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[13]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[14]

Andrus Giraldo, Neil G. R. Broderick, Bernd Krauskopf. Chaotic switching in driven-dissipative Bose-Hubbard dimers: When a flip bifurcation meets a T-point in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021217

[15]

Christian Pötzsche. Nonautonomous bifurcation of bounded solutions II: A Shovel-Bifurcation pattern. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 941-973. doi: 10.3934/dcds.2011.31.941

[16]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[17]

Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747

[18]

Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107

[19]

Joaquín Delgado, Eymard Hernández–López, Lucía Ivonne Hernández–Martínez. Bautin bifurcation in a minimal model of immunoediting. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1397-1414. doi: 10.3934/dcdsb.2019233

[20]

Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (248)
  • HTML views (363)
  • Cited by (0)

Other articles
by authors

[Back to Top]