
-
Previous Article
Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions
- DCDS-B Home
- This Issue
-
Next Article
Two codimension-two bifurcations of a second-order difference equation from macroeconomics
Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations
Department of Mathematics and Statistics, University of Nebraska Kearney, Kearney, Nebraska 68849, USA |
We consider discrete potentials as controls in systems of finite difference equations which are discretizations of a 1-D Schrödinger equation. We give examples of palindromic potentials which have corresponding steerable initial-terminal pairs which are not mirror-symmetric. For a set of palindromic potentials, we show that the corresponding steerable pairs that satisfy a localization property are mirror-symmetric. We express the initial and terminal states in these pairs explicitly as scalar multiples of vector-valued functions of a parameter in the control.
References:
[1] |
G. D. Akrivis and V. A. Dougalis,
Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28.
|
[2] |
K. Beauchard,
Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.
doi: 10.1016/j.matpur.2005.02.005. |
[3] |
D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989. |
[4] |
U. Boscain, J.-P. Gauthier, F. Rossi and M. Sigalotti,
Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.
doi: 10.1007/s00220-014-2195-6. |
[5] |
T. Boykin and G. Klimeck,
The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.
doi: 10.1088/0143-0807/25/4/006. |
[6] |
M. Buttiker and R. Landauer,
Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.
doi: 10.1007/BFb0108208. |
[7] |
R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993. |
[8] |
T. Chan and L. Shen,
Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.
doi: 10.1137/0724025. |
[9] |
K. Beauchard and J.-M. Coron,
Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.
doi: 10.1016/j.jfa.2005.03.021. |
[10] |
A. Goldberg, H. Schey and J. Schwartz,
Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.
doi: 10.1119/1.1973991. |
[11] |
A. Hof, O. Knill and B. Simon,
Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.
doi: 10.1007/BF02099468. |
[12] |
A. Kacar and O. Terzioglu,
Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.
doi: 10.1002/num.20192. |
[13] |
K. Kime,
Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10.
|
[14] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.
doi: 10.1016/0022-247X(90)90330-I. |
[15] |
J. L. Lions,
Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.
doi: 10.1137/1030001. |
[16] |
M. Morancey and V. Nersesyan,
Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.
doi: 10.1016/j.matpur.2014.04.002. |
[17] |
A. Nissen, G. Kreiss and M. Gerritsen,
High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.
doi: 10.1007/s10915-012-9628-1. |
[18] |
K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007. |
[19] |
D. L. Russell,
A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.
doi: 10.1002/sapm1973523189. |
[20] |
L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968. |
[21] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |
show all references
References:
[1] |
G. D. Akrivis and V. A. Dougalis,
Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28.
|
[2] |
K. Beauchard,
Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.
doi: 10.1016/j.matpur.2005.02.005. |
[3] |
D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989. |
[4] |
U. Boscain, J.-P. Gauthier, F. Rossi and M. Sigalotti,
Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.
doi: 10.1007/s00220-014-2195-6. |
[5] |
T. Boykin and G. Klimeck,
The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.
doi: 10.1088/0143-0807/25/4/006. |
[6] |
M. Buttiker and R. Landauer,
Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.
doi: 10.1007/BFb0108208. |
[7] |
R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993. |
[8] |
T. Chan and L. Shen,
Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.
doi: 10.1137/0724025. |
[9] |
K. Beauchard and J.-M. Coron,
Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.
doi: 10.1016/j.jfa.2005.03.021. |
[10] |
A. Goldberg, H. Schey and J. Schwartz,
Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.
doi: 10.1119/1.1973991. |
[11] |
A. Hof, O. Knill and B. Simon,
Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.
doi: 10.1007/BF02099468. |
[12] |
A. Kacar and O. Terzioglu,
Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.
doi: 10.1002/num.20192. |
[13] |
K. Kime,
Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10.
|
[14] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.
doi: 10.1016/0022-247X(90)90330-I. |
[15] |
J. L. Lions,
Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.
doi: 10.1137/1030001. |
[16] |
M. Morancey and V. Nersesyan,
Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.
doi: 10.1016/j.matpur.2014.04.002. |
[17] |
A. Nissen, G. Kreiss and M. Gerritsen,
High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.
doi: 10.1007/s10915-012-9628-1. |
[18] |
K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007. |
[19] |
D. L. Russell,
A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.
doi: 10.1002/sapm1973523189. |
[20] |
L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968. |
[21] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |



[1] |
Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096 |
[2] |
Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124 |
[3] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[4] |
Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811 |
[5] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[6] |
Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems and Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033 |
[7] |
Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041 |
[8] |
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 |
[9] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[10] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
[11] |
Bo Wang, Jiguang Bao. Mirror symmetry for a Hessian over-determined problem and its generalization. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2305-2316. doi: 10.3934/cpaa.2014.13.2305 |
[12] |
Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161 |
[13] |
M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473 |
[14] |
Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086 |
[15] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[16] |
Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 |
[17] |
M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982 |
[18] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[19] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[20] |
Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]