• Previous Article
    Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    Two codimension-two bifurcations of a second-order difference equation from macroeconomics
June  2018, 23(4): 1601-1621. doi: 10.3934/dcdsb.2018063

Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations

Department of Mathematics and Statistics, University of Nebraska Kearney, Kearney, Nebraska 68849, USA

* Corresponding author: Katherine A. Kime

Received  May 2017 Published  February 2018

We consider discrete potentials as controls in systems of finite difference equations which are discretizations of a 1-D Schrödinger equation. We give examples of palindromic potentials which have corresponding steerable initial-terminal pairs which are not mirror-symmetric. For a set of palindromic potentials, we show that the corresponding steerable pairs that satisfy a localization property are mirror-symmetric. We express the initial and terminal states in these pairs explicitly as scalar multiples of vector-valued functions of a parameter in the control.

Citation: Katherine A. Kime. Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1601-1621. doi: 10.3934/dcdsb.2018063
References:
[1]

G. D. Akrivis and V. A. Dougalis, Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28.   Google Scholar

[2]

K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.  doi: 10.1016/j.matpur.2005.02.005.  Google Scholar

[3]

D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989. Google Scholar

[4]

U. BoscainJ.-P. GauthierF. Rossi and M. Sigalotti, Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.  doi: 10.1007/s00220-014-2195-6.  Google Scholar

[5]

T. Boykin and G. Klimeck, The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.  doi: 10.1088/0143-0807/25/4/006.  Google Scholar

[6]

M. Buttiker and R. Landauer, Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.  doi: 10.1007/BFb0108208.  Google Scholar

[7]

R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993. Google Scholar

[8]

T. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.  doi: 10.1137/0724025.  Google Scholar

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.  doi: 10.1016/j.jfa.2005.03.021.  Google Scholar

[10]

A. GoldbergH. Schey and J. Schwartz, Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.  doi: 10.1119/1.1973991.  Google Scholar

[11]

A. HofO. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.  doi: 10.1007/BF02099468.  Google Scholar

[12]

A. Kacar and O. Terzioglu, Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.  doi: 10.1002/num.20192.  Google Scholar

[13]

K. Kime, Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10.   Google Scholar

[14]

I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.  doi: 10.1016/0022-247X(90)90330-I.  Google Scholar

[15]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[16]

M. Morancey and V. Nersesyan, Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.  doi: 10.1016/j.matpur.2014.04.002.  Google Scholar

[17]

A. NissenG. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.  doi: 10.1007/s10915-012-9628-1.  Google Scholar

[18]

K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007. Google Scholar

[19]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.  doi: 10.1002/sapm1973523189.  Google Scholar

[20]

L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968. Google Scholar

[21]

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.  Google Scholar

show all references

References:
[1]

G. D. Akrivis and V. A. Dougalis, Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain, Bulletin Greek Mathematical Society, 31 (1990), 19-28.   Google Scholar

[2]

K. Beauchard, Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., 84 (2005), 851-956.  doi: 10.1016/j.matpur.2005.02.005.  Google Scholar

[3]

D. Bohm, Quantum Theory, Dover Publications Inc., New York, 1989. Google Scholar

[4]

U. BoscainJ.-P. GauthierF. Rossi and M. Sigalotti, Approximate controllability, exact controllability and conical eigenvalue intersectons for quantum mechanical systems, Comm. Math. Phys., 333 (2015), 1225-1239.  doi: 10.1007/s00220-014-2195-6.  Google Scholar

[5]

T. Boykin and G. Klimeck, The discretized Schrödinger equation and simple models for semiconductor quantum wells, Eur. J. Phys., 25 (2004), 503-514.  doi: 10.1088/0143-0807/25/4/006.  Google Scholar

[6]

M. Buttiker and R. Landauer, Traversal time for tunneling, Advances in Solid State Physics, 25 (2007), 711-717.  doi: 10.1007/BFb0108208.  Google Scholar

[7]

R. Burden and J. Faires, Numerical Analysis, 5th edition, PWS, Boston, 1993. Google Scholar

[8]

T. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM. J. Numer. Anal., 24 (1987), 336-349.  doi: 10.1137/0724025.  Google Scholar

[9]

K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well, Journal of Functional Analysis, 232 (2006), 328-389.  doi: 10.1016/j.jfa.2005.03.021.  Google Scholar

[10]

A. GoldbergH. Schey and J. Schwartz, Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena, American Journal of Physics, 35 (1967), 177-186.  doi: 10.1119/1.1973991.  Google Scholar

[11]

A. HofO. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Communications in Mathematical Physics, 174 (1995), 149-159.  doi: 10.1007/BF02099468.  Google Scholar

[12]

A. Kacar and O. Terzioglu, Symbolic computation of the potential in a nonlinear Schrödinger Equation, Numer. Methods Partial Differential Equations, 23 (2007), 475-483.  doi: 10.1002/num.20192.  Google Scholar

[13]

K. Kime, Finite difference approximation of control via the potential in a 1-D Schrodinger equation, Electronic Journal of Differential Equations, 2000 (2000), 1-10.   Google Scholar

[14]

I. Lasiecka and R. Triggiani, Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment, J. Math. Anal. Appl., 146 (1990), 1-33.  doi: 10.1016/0022-247X(90)90330-I.  Google Scholar

[15]

J. L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30 (1988), 1-68.  doi: 10.1137/1030001.  Google Scholar

[16]

M. Morancey and V. Nersesyan, Simultaneous global exact controllability of an arbitrary number of 1D bilinear Schrödinger equations, J. Math. Pures Appl., 103 (2015), 228-254.  doi: 10.1016/j.matpur.2014.04.002.  Google Scholar

[17]

A. NissenG. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Comput., 55 (2013), 173-199.  doi: 10.1007/s10915-012-9628-1.  Google Scholar

[18]

K. H. Rosen, Discrete Mathematics and Its Applications, 6th edition, McGraw Hill, New York, 2007. Google Scholar

[19]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies in Applied Mathematics, 52 (1973), 189-211.  doi: 10.1002/sapm1973523189.  Google Scholar

[20]

L. I. Schiff, Quantum Mechanics, McGraw Hill, New York, 1968. Google Scholar

[21]

E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods, SIAM Review, 47 (2005), 197-243.  doi: 10.1137/S0036144503432862.  Google Scholar

Figure 1.  Example 1. $\alpha$-Localized, Mirror-Symmetric
Figure 2.  Example 2. Not Localized, Not Mirror-Symmetric
Figure 3.  Example 3. Localized with Equal Degree of Restriction Equal to 1, Not $\alpha$-Localized, Not Mirror-Symmetric
[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[12]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (79)
  • HTML views (368)
  • Cited by (0)

Other articles
by authors

[Back to Top]