-
Previous Article
A new flexible discrete-time model for stable populations
- DCDS-B Home
- This Issue
-
Next Article
Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise
Algebraic limit cycles for quadratic polynomial differential systems
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal |
We prove that for a quadratic polynomial differential system having three pairs of diametrally opposite equilibrium points at infinity that are positively rationally independent, has at most one algebraic limit cycle. Our result provides a partial positive answer to the following conjecture: Quadratic polynomial differential systems have at most one algebraic limit cycle.
References:
[1] |
J. Chavarriga, H. Giacomini and M. Grau,
Necessary conditions for the existence of invariant algebraic curves for planar polynomial systems, Bull. Sci. Math., 129 (2005), 99-126.
doi: 10.1016/j.bulsci.2004.09.002. |
[2] |
J. Chavarriga, H. Giacomini and J. Llibre,
Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl., 261 (2001), 85-99.
doi: 10.1006/jmaa.2001.7476. |
[3] |
J. Chavarriga and J. Llibre,
Invariant algebraic curves and rational first integrals planar polynomial vector fields, J. Differential Equations, 169 (2001), 1-16.
doi: 10.1006/jdeq.2000.3891. |
[4] |
J. Chavarriga, J. Llibre and J. Sorolla,
Algebraic limit cycles of degree four for quadratic systems, J. Differential Equations, 200 (2004), 206-244.
doi: 10.1016/j.jde.2004.01.003. |
[5] |
L. S. Chen,
Uniqueness of the limit cycle of a quadratic system in the plane, Acta Math. Sinica, 20 (1977), 11-13.
|
[6] |
C. Christopher,
Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburhgh, 124A (1994), 1209-1229.
doi: 10.1017/S0308210500030213. |
[7] |
C. Christopher, J. Llibre and G. Swirszcz,
Invariant algebraic curves of large degree for quadratic systems, J. Math. Anal. Appl., 303 (2005), 206-244.
doi: 10.1016/j.jmaa.2004.08.042. |
[8] |
B. Coll and J. Llibre,
Limit cycles for a quadratic systems with an invariant straight line and some evolution of phase portraits, Colloquia Mathematica Societatis Janos Bolyai, 53 (1988), 111-123.
|
[9] |
B. Coll, G. Gasull and J. Llibre,
Quadratic systems with a unique finite rest point, Publicacions Matematiques, 32 (1988), 199-259.
doi: 10.5565/PUBLMAT_32288_08. |
[10] |
W. A. Coppel,
Some quadratic systems with at most one limit cycle, Dynamics Reported, 2 (1989), 61-88.
|
[11] |
F. Dumortier, J. Llibre and J. C. Artés,
Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, (2006).
|
[12] |
R. M. Evdokimenco,
Construction of algebraic paths and the qualitative investigation in the large of the properties of integral curves of a system of differential equations, Differential Equations, 6 (1970), 1349-1358.
|
[13] |
R. M. Evdokimenco, Behavior of integral curves of a dynamic system, Differential Equations, 9 (1974), 1095-1103. Google Scholar |
[14] |
R. M. Evdokimenco,
Investigation in the large of a dynamic systems with a given integral curve, Differential Equations, 15 (1979), 215-221.
|
[15] |
V. F. Filiptsov,
Algebraic limit cycles, Differencial?nye Uravnenija, 9 (1973), 1281-1288.
|
[16] |
D. Hilbert, Mathematische Probleme, in Lecture, Second Internat. Congr. Math., Paris, 1900, in Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900, pp. 253-297; English transl. in Bull. Amer. Math. Soc., 8 (1902), 437-479. |
[17] |
J. Llibre,
Integrability of polynomial differential systems, in Handbook of Differential Equations, Ordinary Differential Equations, Eds. A. Cañada, P. Drabek and A. Fonda, Elsevier, 1 (2004), 437-479.
|
[18] |
J. Llibre and D. Schlomiuk,
On the limit cycles bifurcating from an ellipse of a quadratic center, Discrete Contin. Dyn. Syst. Series B, 35 (2015), 1091-1102.
|
[19] |
J. Llibre and G. Swirszcz,
Classification of quadratic systems admitting the existence of an algebraic limit cycle, Bull. Sci. Math., 131 (2007), 405-421.
doi: 10.1016/j.bulsci.2006.03.014. |
[20] |
J. Llibre and C. Valls, Quadratic polynomial differential systems with one pair of singular points at infinity have at most one algebraic limit cycle, to appear in Proc. Edinburgh Math. Soc. Google Scholar |
[21] |
J. Llibre and C. Valls, Quadratic polynomial differential systems with two pairs of singular points at infinity have at most one algebraic limit cycle, to appear in Geometria Dedicata. Google Scholar |
[22] |
B. Shen,
The problem of the existence of limit cycles and separatrix cycles of cubic curves in quadratic systems, Chinese Ann. Math. Ser. A, 12 (1991), 382-389.
|
[23] |
A. I. Yablonskii, Limit cycles of a certain differential equations, DifferentialEquations, 2 (1966), 193-239. Google Scholar |
[24] |
Q. Yuan-Xun, On the algebraic limit cycles of second degree of the differential equation $dy/dx=\sum_{0 ≤ i+j ≤ 2} a_{ij} x^i y^j/\sum_{0 ≤ i+j ≤ 2} b_{ij} x^i y^j$, Acta Math. Sinica, 8 (1958), 23-35. Google Scholar |
[25] |
X. Zhang,
Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2), Sci. China Ser. A, 46 (2003), 271-279.
doi: 10.1360/03ys9029. |
show all references
References:
[1] |
J. Chavarriga, H. Giacomini and M. Grau,
Necessary conditions for the existence of invariant algebraic curves for planar polynomial systems, Bull. Sci. Math., 129 (2005), 99-126.
doi: 10.1016/j.bulsci.2004.09.002. |
[2] |
J. Chavarriga, H. Giacomini and J. Llibre,
Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl., 261 (2001), 85-99.
doi: 10.1006/jmaa.2001.7476. |
[3] |
J. Chavarriga and J. Llibre,
Invariant algebraic curves and rational first integrals planar polynomial vector fields, J. Differential Equations, 169 (2001), 1-16.
doi: 10.1006/jdeq.2000.3891. |
[4] |
J. Chavarriga, J. Llibre and J. Sorolla,
Algebraic limit cycles of degree four for quadratic systems, J. Differential Equations, 200 (2004), 206-244.
doi: 10.1016/j.jde.2004.01.003. |
[5] |
L. S. Chen,
Uniqueness of the limit cycle of a quadratic system in the plane, Acta Math. Sinica, 20 (1977), 11-13.
|
[6] |
C. Christopher,
Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburhgh, 124A (1994), 1209-1229.
doi: 10.1017/S0308210500030213. |
[7] |
C. Christopher, J. Llibre and G. Swirszcz,
Invariant algebraic curves of large degree for quadratic systems, J. Math. Anal. Appl., 303 (2005), 206-244.
doi: 10.1016/j.jmaa.2004.08.042. |
[8] |
B. Coll and J. Llibre,
Limit cycles for a quadratic systems with an invariant straight line and some evolution of phase portraits, Colloquia Mathematica Societatis Janos Bolyai, 53 (1988), 111-123.
|
[9] |
B. Coll, G. Gasull and J. Llibre,
Quadratic systems with a unique finite rest point, Publicacions Matematiques, 32 (1988), 199-259.
doi: 10.5565/PUBLMAT_32288_08. |
[10] |
W. A. Coppel,
Some quadratic systems with at most one limit cycle, Dynamics Reported, 2 (1989), 61-88.
|
[11] |
F. Dumortier, J. Llibre and J. C. Artés,
Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, (2006).
|
[12] |
R. M. Evdokimenco,
Construction of algebraic paths and the qualitative investigation in the large of the properties of integral curves of a system of differential equations, Differential Equations, 6 (1970), 1349-1358.
|
[13] |
R. M. Evdokimenco, Behavior of integral curves of a dynamic system, Differential Equations, 9 (1974), 1095-1103. Google Scholar |
[14] |
R. M. Evdokimenco,
Investigation in the large of a dynamic systems with a given integral curve, Differential Equations, 15 (1979), 215-221.
|
[15] |
V. F. Filiptsov,
Algebraic limit cycles, Differencial?nye Uravnenija, 9 (1973), 1281-1288.
|
[16] |
D. Hilbert, Mathematische Probleme, in Lecture, Second Internat. Congr. Math., Paris, 1900, in Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900, pp. 253-297; English transl. in Bull. Amer. Math. Soc., 8 (1902), 437-479. |
[17] |
J. Llibre,
Integrability of polynomial differential systems, in Handbook of Differential Equations, Ordinary Differential Equations, Eds. A. Cañada, P. Drabek and A. Fonda, Elsevier, 1 (2004), 437-479.
|
[18] |
J. Llibre and D. Schlomiuk,
On the limit cycles bifurcating from an ellipse of a quadratic center, Discrete Contin. Dyn. Syst. Series B, 35 (2015), 1091-1102.
|
[19] |
J. Llibre and G. Swirszcz,
Classification of quadratic systems admitting the existence of an algebraic limit cycle, Bull. Sci. Math., 131 (2007), 405-421.
doi: 10.1016/j.bulsci.2006.03.014. |
[20] |
J. Llibre and C. Valls, Quadratic polynomial differential systems with one pair of singular points at infinity have at most one algebraic limit cycle, to appear in Proc. Edinburgh Math. Soc. Google Scholar |
[21] |
J. Llibre and C. Valls, Quadratic polynomial differential systems with two pairs of singular points at infinity have at most one algebraic limit cycle, to appear in Geometria Dedicata. Google Scholar |
[22] |
B. Shen,
The problem of the existence of limit cycles and separatrix cycles of cubic curves in quadratic systems, Chinese Ann. Math. Ser. A, 12 (1991), 382-389.
|
[23] |
A. I. Yablonskii, Limit cycles of a certain differential equations, DifferentialEquations, 2 (1966), 193-239. Google Scholar |
[24] |
Q. Yuan-Xun, On the algebraic limit cycles of second degree of the differential equation $dy/dx=\sum_{0 ≤ i+j ≤ 2} a_{ij} x^i y^j/\sum_{0 ≤ i+j ≤ 2} b_{ij} x^i y^j$, Acta Math. Sinica, 8 (1958), 23-35. Google Scholar |
[25] |
X. Zhang,
Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2), Sci. China Ser. A, 46 (2003), 271-279.
doi: 10.1360/03ys9029. |
[1] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[2] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[3] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[6] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[7] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[8] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[9] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[10] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[11] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[12] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[13] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[14] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[15] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[16] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[17] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[18] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[19] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[20] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]