[1]
|
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), vol. 133 of Teubner-Texte Math., Teubner, Stuttgart, 1993, 9-126.
doi: 10.1007/978-3-663-11336-2_1.
|
[2]
|
P. Bartel, F. Ludwig, A. Schwab and C. Stock, ph-taxis: directional tumor cell migration along ph-gradients, Acta Physiol. , 204 (2012), p113.
|
[3]
|
P. -L. Chow,
Stochastic Partial Differential Equations, 2nd edition, Advances in Applied Mathematics, CRC Press, Boca Raton, FL, 2015.
|
[4]
|
J. Cresson, B. Puig and S. Sonner, Stochastic models in biology and the invariance problem, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2145-2168.
doi: 10.3934/dcdsb.2016041.
|
[5]
|
M. Damaghi, J. W. Wojtkowiak and R. J. Gillies, ph sensing and regulation in cancer, Frontiers in Physiology 4 (2013).
doi: 10.3389/fphys.2013.00370.
|
[6]
|
F. Delarue and G. Guatteri, Weak existence and uniqueness for forward-backward SDEs, Stochastic Process. Appl., 116 (2006), 1712-1742.
doi: 10.1016/j.spa.2006.05.002.
|
[7]
|
A. Fasano, M.A. Herrero and M.R. Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth, Math. Biosci., 220 (2009), 45-56.
doi: 10.1016/j.mbs.2009.04.001.
|
[8]
|
R.F. Fox and Y.-n. Lu, Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels, Physical Review E, 49 (1994), 3421-3431.
doi: 10.1103/PhysRevE.49.3421.
|
[9]
|
R.A. Gatenby and E.T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753.
|
[10]
|
R.A. Gatenby and E.T. Gawlinski, The glycolytic phenotype in carcinogenesis and tumor invasion insights through mathematical models, Cancer Research, 63 (2003), 3847-3854.
|
[11]
|
I. I. Gikhman and A. V. Skorohod, Stochastic Differential Equations, Springer-Verlag, New York-Heidelberg, 1972, Translated from the Russian by Kenneth Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72.
|
[12]
|
A. Giese, L. Kluwe, H. Meissner, E. Michael and M. Westphal, Migration of human glioma cells on myelin., Neurosurgery, 38 (1996), 755-764.
|
[13]
|
D. Hanahan and R.A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
doi: 10.1016/j.cell.2011.02.013.
|
[14]
|
S.A. Hiremath and C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29 (2016), 851-914.
doi: 10.1088/0951-7715/29/3/851.
|
[15]
|
S.A. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Anal. Real World Appl., 22 (2015), 176-205.
doi: 10.1016/j.nonrwa.2014.08.008.
|
[16]
|
L. Jerby, L. Wolf, C. Denkert, G. Stein, M. Hilvo, M. Oresic, T. Geiger and E. Ruppin, Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer, Cancer Res., 72 (2012), 5712-5720.
doi: 10.1158/0008-5472.CAN-12-2215.
|
[17]
|
B. Jourdain, C. Le Bris and T. Lelièvre, Coupling PDEs and SDEs: the illustrative example of the multiscale simulation of viscoelastic flows, in Multiscale methods in science and engineering, vol. 44 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005,149-168.
doi: 10.1007/3-540-26444-2_7.
|
[18]
|
P.E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence, Stoch. Anal. Appl., 28 (2010), 937-945.
doi: 10.1080/07362994.2010.515194.
|
[19]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, vol. 23 of Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5.
|
[20]
|
P.E. Kloeden, S. Sonner and C. Surulescu, A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2233-2254.
doi: 10.3934/dcdsb.2016045.
|
[21]
|
O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type. Translated from the Russian by S. Smith. , Translations of Mathematical Monographs. 23. Providence, RI: American Mathematical Society (AMS). XI, 648 p. (1968)., 1968.
|
[22]
|
A.H. Lee and I.F. Tannock, Heterogeneity of intracellular ph and of mechanisms that regulate intracellular ph in populations of cultured cells, Cancer Research, 58 (1998), 1901-1908.
|
[23]
|
G.M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl. (4), 148 (1987), 77-99.
doi: 10.1007/BF01774284.
|
[24]
|
W. Liu and M. Röckner, SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal., 259 (2010), 2902-2922.
doi: 10.1016/j.jfa.2010.05.012.
|
[25]
|
J. Ma and J. Yong, Forward-backward Stochastic Differential Equations and Their Applications, vol. 1702 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-540-48831-6.
|
[26]
|
X. Mao, Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402.
|
[27]
|
N.K. Martin, E.A. Gaffney, R.A. Gatenby and P.K. Maini, Tumour-stromal interactions in acid-mediated invasion: A mathematical model, J. Theoret. Biol., 267 (2010), 461-470.
doi: 10.1016/j.jtbi.2010.08.028.
|
[28]
|
G. Meral, C. Stinner and C. Surulescu, A multiscale model for acid-mediated tumor invasion: Therapy approaches, Journal of Coupled Systems and Multiscale Dynamics, 3 (2015), 135-142.
doi: 10.1166/jcsmd.2015.1071.
|
[29]
|
G. Meral, C. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 189-213.
doi: 10.3934/dcdsb.2015.20.189.
|
[30]
|
G. Meral and C. Surulescu, Mathematical modelling, analysis and numerical simulations for the influence of heat shock proteins on tumour invasion, J. Math. Anal. Appl., 408 (2013), 597-614.
doi: 10.1016/j.jmaa.2013.06.017.
|
[31]
|
A. Milian, Stochastic viability and a comparison theorem, Colloq. Math., 68 (1995), 297-316.
doi: 10.4064/cm-68-2-297-316.
|
[32]
|
R.K. Paradise, M.J. Whitfield, D.A. Lauffenburger and K.J. VanVliet, Directional cell migration in an extracellular ph gradient: a model study with an engineered cell line and primary microvascular endothelial cells, Experimental Cell Research, 319 (2013), 487-497.
doi: 10.1016/j.yexcr.2012.11.006.
|
[33]
|
E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999), 123-150.
doi: 10.1007/s004409970001.
|
[34]
|
S. J. Reshkin, M. R. Greco and R. A. Cardone, Role of pHi, and proton transporters in oncogene-driven neoplastic transformation, Phil. Trans. R. Soc. B, 369 (2014), 20130100.
doi: 10.1098/rstb.2013.0100.
|
[35]
|
K. Smallbone, D.J. Gavaghan, R.A. Gatenby and P.K. Maini, The role of acidity in solid tumour growth and invasion, J. Theoret. Biol., 235 (2005), 476-484.
doi: 10.1016/j.jtbi.2005.02.001.
|
[36]
|
C. Stinner, C. Surulescu and G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math., 80 (2015), 1300-1321.
doi: 10.1093/imamat/hxu055.
|
[37]
|
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X.
|
[38]
|
C. Stock and A. Schwab, Protons make tumor cells move like clockwork, Pflügers Archiv-European Journal of Physiology, 458 (2009), 981-992.
doi: 10.1007/s00424-009-0677-8.
|
[39]
|
M. Stubbs, P.M. McSheehy, J.R. Griffiths and C.L. Bashford, Causes and consequences of tumour acidity and implications for treatment, Molecular Medicine Today, 6 (2000), 15-19.
doi: 10.1016/S1357-4310(99)01615-9.
|
[40]
|
B.A. Webb, M. Chimenti, M.P. Jacobson and D.L. Barber, Dysregulated ph: A perfect storm for cancer progression, Nature Reviews Cancer, 11 (2011), 671-677.
doi: 10.1038/nrc3110.
|
[41]
|
D. Widmer, et al., Hypoxia contributes to melanoma heterogeneity by triggering hif1α-dependent phenotype switching., J. Invest. Dermat., 133 (2013), 2436-2443.
doi: 10.1038/jid.2013.115.
|
[42]
|
L. Zhang, K. Radtke, L. Zheng, A. Q. Cai, T. F. Schilling and Q. Nie, Noise drives sharpening of gene expression boundaries in the zebrafish hindbrain, Molecular Systems Biology, 8 (2012), p613.
doi: 10.1038/msb.2012.45.
|
[43]
|
A. Zhigun, The Malliavin derivative and compactness: application to a degenerate PDE-SDE coupling, Preprint, arXiv: 1609.01495, submitted, 2016.
|
[44]
|
A. Zhigun, C. Surulescu and A. Hunt, Global existence for a degenerate haptotaxis model of tumor invasion under the go-or-grow dichotomy hypothesis, Preprint, arXiv: 1605.09226, submitted, 2016.
|
[45]
|
A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys. , 67 (2016), Art. 146, 29pp.
doi: 10.1007/s00033-016-0741-0.
|