Semilinear parabolic problems are considered for which we prove their topological sensitivity to arbitrarily small perturbations of the nonlinear term. This instability result is a consequence of the sensitivity of the multiplicity of solutions of the corresponding nonlinear elliptic problems. As shown here, it is indeed always possible (in dimension $d = 1$ or $d = 2$ ) to find an arbitrary small perturbation that e.g. generates locally an S on the global bifurcation diagram, substituting thus a single solution by several ones. Such an increase in the local multiplicity of the solutions to the elliptic problem results then into a topological instability for the corresponding parabolic problem.
The rigorous proof of this instability result requires though to revisit the classical concept of topological equivalence to encompass important cases for applications such as semi-linear parabolic problems for which the semigroup may exhibit non-global dissipative properties, allowing for the coexistence of blow-up regions and local attractors in the phase space; cases that arise e.g. in combustion theory. A revised framework of topological robustness is thus introduced in that respect within which the main topological instability result is then proved for continuous, locally Lipschitz but not necessarily $C^1$ nonlinear terms, that prevent in particular the use of linearization techniques.
Citation: |
Figure 1.
Schematic of some typical situations dealt with Theorem 3.1. The left panel corresponds to case (i), the right panel corresponds to case (ⅱ), and the middle panel corresponds to case (ⅲ). In each case, either a multiple-point or a new fold-point can be created (locally) by arbitrary small perturbations of the nonlinearity
[1] | R. Abraham and J. E. Marsden, Foundations of Mechanics, Addison-Wesley Publishing Company, Inc., 1978. doi: 10.1090/chel/364. |
[2] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709. doi: 10.1137/1018114. |
[3] | A. A. Andronov and L. S. Pontryagin, Systémes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-250. |
[4] | V. I. Arnol'd, Singularity Theory, vol. 53, Cambridge University Press, 1981. |
[5] | V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 250, Springer-Verlag, New York, 1983, Translated from the Russian by Joseph Szücs, Translation edited by Mark Levi. doi: 10.1007/978-1-4612-1037-5. |
[6] | J. Bebernes and D. Eberly, Mathematical Problems From Combustion Theory, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-4546-9. |
[7] | N. Ben-Gal, Grow-Up Solutions and Heteroclinics to Infinity for Scalar Parabolic PDEs, Ph. D. Thesis, Division of Applied Mathematics, Brown University, 2010. |
[8] | M. Berger, P. Church and J. Timourian, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. Ⅰ, Indiana Univ. Math. J., 34 (1985), 1-19. doi: 10.1512/iumj.1985.34.34001. |
[9] | ______, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. Ⅱ, Trans. Amer. Math. Soc., 307 (1988), 225-244. doi: 10.1090/S0002-9947-1988-0936814-8. |
[10] | H. Brezis and H. Berestycki, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), 415-436. doi: 10.1016/0362-546X(80)90083-8. |
[11] | H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Analysis: Theory, Methods and Applications, 10 (1986), 55-64. doi: 10.1016/0362-546X(86)90011-8. |
[12] | H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t - Δ u = g(u)$ revisited, Adv. Differential Equations, 1 (1996), 73-90. |
[13] | H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Compl. Madrid, 10 (1997), 443-469. |
[14] | F. Brezzi and H. Fujii, Numerical imperfections and perturbations in the approximation of nonlinear problems, The Mathematics of Finite Elements and Applications, Ⅳ (Uxbridge, 1981), 431-452, Academic Press, London-New York, 1982. |
[15] | F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Numerische Mathematik, 36 (1980/81), 1-25. doi: 10.1007/BF01395985. |
[16] | K. J. Brown, M. M. A. Ibrahim and R. Shivaji, S-shaped bifurcation curves, Nonlinear Anal.: Theory, Methods, and Applications, 5 (1981), 475-486. doi: 10.1016/0362-546X(81)90096-1. |
[17] | P. Brunovský and P. Poláčik, The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension, J. Differential Equations, 135 (1997), 129-181. doi: 10.1006/jdeq.1996.3234. |
[18] | A. Castro and R. Shivaji, Uniqueness of positive solutions for a class of elliptic boundary value problems, Proc. Royal Soc. Edinburgh Sect. A: Mathematics, 98 (1984), 267-269. doi: 10.1017/S0308210500013445. |
[19] | T. Cazenave, An Introduction to Semilinear Elliptic Equations, Editora do Instituto de Matemática, Universidade Federal do Rio de Janeiro, 2006. |
[20] | T. Cazenave, M. Escobedo and A. Pozio, Some stability properties for minimal solutions of $-Δ u = λ g(u)$, Portugaliae Mathematica, 59 (2002), 373-391. |
[21] | T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, The Clarendon Press Oxford University Press, New York, 1998, Translated from the 1990 French original by Yvan Martel and revised by the authors. |
[22] | S. C. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publ., N. Y., 1957. |
[23] | M. D. Chekroun, M. Ghil, J. Roux and F. Varadi, Averaging of time-periodic systems without a small parameter, Disc. Cont. Dyn. Syst. A, 14 (2006), 753-782. doi: 10.3934/dcds.2006.14.753. |
[24] | M. D. Chekroun and J. Roux, Homeomorphism groups of normed vector space: The conjugacy problem and the Koopman operator, Disc. Cont. Dyn. Syst. A, 33 (2013), 3957-3980. doi: 10.3934/dcds.2013.33.3957. |
[25] | M. D. Chekroun, E. Park and R. Temam, The Stampacchia maximum principle for stochastic partial differential equations and applications, J. Differential Equations, 260 (2016), 2926-2972. doi: 10.1016/j.jde.2015.10.022. |
[26] | M. D. Chekroun, A. Kroener and H. Liu, Galerkin approximations of nonlinear optimal control problems in Hilbert spaces, Electron. J. Differential Equations, 2017 (2017), 1-40. |
[27] | S.-N. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation, Ⅰ, Arch. Rational Mech. Anal., 59 (1975), 159-188. doi: 10.1007/BF00249688. |
[28] | S. -N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, vol. 251, Springer-Verlag, New York/Berlin, 1982. doi: 10.1007/978-1-4613-8159-4. |
[29] | P. T. Church and J. G. Timourian, Global structure for nonlinear operators in differential and integral equations. Ⅰ. Folds; Ⅱ. Cusps, in Topological Nonlinear Analysis Ⅱ. Progress in Nonlinear Differential Equations and Their Applications (eds. M. Matzeu and A. Vignoli), 27, Birkhäuser Boston, (1997), 109-160,161-245. doi: 10.1007/978-1-4612-4126-3_4. |
[30] | M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325. |
[31] | ______, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218. doi: 10.1007/BF00280741. |
[32] | N. Damil and M. Potier-Ferry, A new method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures, Intnl. J. Engineering Science, 28 (1990), 943-957. doi: 10.1016/0020-7225(90)90043-I. |
[33] | E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156. doi: 10.1016/0022-0396(88)90021-6. |
[34] | D. Daners, Domain perturbation for linear and semi-linear boundary value problems, in Handbook of Differential Equations: Stationary Partial Differential Equations, (M. Chipot, Editor), Elsevier, 6 (2008), 1-81. doi: 10.1016/S1874-5733(08)80018-6. |
[35] | K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. |
[36] | Y. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic problems from combustion theory, SIAM J. Math. Analysis, 32 (2000), 707-733. doi: 10.1137/S0036141098343586. |
[37] | Y. Du and Y. Lou, Proof of a conjecture for the perturbed Gelfand equation from combustion theory, J. Differential Equations, 173 (2001), 213-230. doi: 10.1006/jdeq.2000.3932. |
[38] | J. Dugundji, Topology, Allyn and Bacon, Boston, 1966. |
[39] | B. Fiedler and C. Rocha, Orbit equivalence of global attractors of semilinear parabolic differential equations, Trans. Amer. Math. Soc., 352 (1999), 257-284. doi: 10.1090/S0002-9947-99-02209-6. |
[40] | M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. in Differential Equations, 4 (1999), 163-196. |
[41] | M. Fila, Blow-up of solutions of supercritical parabolic equations, in Handbook of Differential Equations: Evolutionary Equations, Amsterdam: Elsevier, 396 (1986), 777-798. |
[42] | P. M. Fitzpatrick, I. Massabo and J. Pejsachowicz, On the covering dimension of the set of solutions of some nonlinear equations, Trans. Amer. Math. Soc., 296 (1986), 777-798. doi: 10.1090/S0002-9947-1986-0846606-4. |
[43] | D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinematics, 2nd-edition, Plenum Press, 1969. |
[44] | H. Fujita, On the nonlinear equations $Δ u +e^u = 0$ and $\frac{\partial v}{\partial t} = Δ v + e^v$, Bull. Amer. Math. Soc., 75 (1969), 132-135. doi: 10.1090/S0002-9904-1969-12175-0. |
[45] | I. M. Gel'fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29 (1963), 295-381. doi: 10.1090/trans2/029/12. |
[46] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/978-3-642-61798-0. |
[47] | M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure and Appl. Math., 32 (1979), 21-98. doi: 10.1002/cpa.3160320103. |
[48] | ______, Singularities and Groups in Bifurcation Theory, Vol. Ⅰ, Applied Mathematical Sciences vol. 51, Springer, 1985. doi: 10.1007/978-1-4612-5034-0. |
[49] | J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988. doi: 10.1090/surv/025. |
[50] | J. K. Hale, L. T. Magalhães and W. M. Oliva, Dynamics in Infinite Dimensions, 2nd Ed. Springer-Verlag, 2002. doi: 10.1007/b100032. |
[51] | M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-112-7. |
[52] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981. doi: 10.1007/BFb0089647. |
[53] | D. Henry, Perturbation of the Boundary in Boundary-value Problems of Partial Differential Equations, London Mathematical Society Lecture Note Series, vol. 318, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511546730. |
[54] | M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, 33, Springer-Verlag,1976. doi: 10.1007/978-1-4684-9449-5. |
[55] | D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal, 49 (1972/73), 241-269. doi: 10.1007/BF00250508. |
[56] | A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, With a supplement by Anatole Katok and Leonardo Mendoza, Encyclopedia of Mathematics and Its Applications 54, Cambridge University Press, 1995. doi: 10.1017/CBO9780511809187. |
[57] | J. P. Keener and H. B. Keller, Perturbed bifurcation theory, Arch. Rational Mech. Anal, 50 (1973), 159-175. doi: 10.1007/BF00703966. |
[58] | H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, 156, Springer, 2012. doi: 10.1007/978-1-4614-0502-3. |
[59] | P. Korman and Y. Li, On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020. doi: 10.1090/S0002-9939-99-04928-X. |
[60] | K. Kuratowski, Topology, vol. 2, Academic Press, New York, 1968. |
[61] | Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 3rd edition, 2004. doi: 10.1007/978-1-4757-3978-7. |
[62] | J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup., 51 (1934), 45-78; Russian transl. in Uspekhi Mat. Nauk, 1 (1946), 71-95. doi: 10.24033/asens.836. |
[63] | P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM. Rev, 24 (1982), 441-467. doi: 10.1137/1024101. |
[64] | L. Lorenzi, A. Lunardi, G. Metafune and D. Pallara, Analytic Semigroups and Reaction-Diffusion Problems, 8th International Internet Seminar on Evolution Equations, 2005. |
[65] | K. Lu, Structural stability for scalar parabolic equations, J. of Differential Equations, 114 (1994), 253-271. doi: 10.1006/jdeq.1994.1150. |
[66] | A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. |
[67] | T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. doi: 10.1142/9789812701152_fmatter. |
[68] | ______, Phase Transition Dynamics, Springer-Verlag, 2014. doi: 10.1007/978-1-4614-8963-4. |
[69] | Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255. |
[70] | I. Massabo and J. Pejsachowicz, On the connectivity properties of the solution set of parametrized families of compact vector fields, J. Funct. Anal, 59 (2002), 151-166. doi: 10.1016/0022-1236(84)90069-7. |
[71] | J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, vol. 19, Springer-Verlag, 1976. doi: 10.1007/978-1-4612-6374-6. |
[72] | H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, Journal of the Faculty of Science: University of Tokyo: Section IA, 29 (1982), 401-441. |
[73] | T. Minamoto, Numerical method with guaranteed accuracy of a double turning point for a radially symmetric solution of the perturbed Gelfand equation, J. Comput. App. Math., 169 (2004), 151-160. doi: 10.1016/j.cam.2003.12.001. |
[74] | T. Minamoto and M. T. Nakao, Numerical method for verifying the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation, J. Comput. App. Math., 202 (2007), 177-185. doi: 10.1016/j.cam.2006.02.023. |
[75] | G. Moore and A. Spence, The calculation of turning points of nonlinear equations, SIAM Journal on Numerical Analysis, 17 (1980), 567-576. doi: 10.1137/0717048. |
[76] | K. Nagasaki and T. Suzuki, Spectral and related properties about the Emden-Fowler equation $-Δ u = λ e^u$ on circular domains, Mathematische Annalen, 299 (1994), 1-15. doi: 10.1007/BF01459770. |
[77] | S. E. Newhouse, Lectures on Dynamical Systems, Springer, 2011. doi: 10.1007/978-3-642-13929-1_5. |
[78] | L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Lecture Notes, AMS/CLN 6, 2001. |
[79] | T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, Ⅱ, J. Differential Equations, 158 (1999), 94-151. doi: 10.1016/S0022-0396(99)80020-5. |
[80] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[81] | P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global existence and Steady States, Springer, 2007. doi: 10.1007/978-3-7643-8442-5. |
[82] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9. |
[83] | ______, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202. doi: 10.1216/RMJ-1973-3-2-161. |
[84] | ______, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J., 23 (1973/74), 173-186. doi: 10.1512/iumj.1974.23.23014. |
[85] | J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. |
[86] | L. Roques, M. D. Chekroun, M. Cristofol, S. Soubeyrand and M. Ghil, Parameter estimation for energy balance models with memory Proc. Roy. Soc. A, 470 (2014), 20140349, 20pp. doi: 10.1098/rspa.2014.0349. |
[87] | L. Roques and M. D. Chekroun, On population resilience to external perturbations, SIAM J. on Appl. Mathematics, 68 (2007), 133-153. doi: 10.1137/060676994. |
[88] | D. H. Sattinger, Topics in Stability and Bifurcation Theory, Springer, 1973. doi: 10.1007/BFb0060079. |
[89] | ______, Bifurcation and symmetry breaking in applied mathematics, Bulletin of the American Mathematical Society, 3 (1980), 779-819. doi: 10.1090/S0273-0979-1980-14823-5. |
[90] | G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. |
[91] | M. Shearer, One-parameter perturbations of bifurcation from a simple eigenvalue, Math. Proc. Cambridge Phil. Soc., 88 (1980), 111-123. doi: 10.1017/S0305004100057388. |
[92] | S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817. doi: 10.1090/S0002-9904-1967-11798-1. |
[93] | A. Spence and B. Werner, Non-simple turning points and cusps, IMA Journal of Numerical Analysis, 2 (1982), 413-427. doi: 10.1093/imanum/2.4.413. |
[94] | K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Mathematical Society Lecture Note Series, Cambridge University Press, 223, 1995. |
[95] | ______, Bifurcation theory for semilinear elliptic boundary value problems, Hiroshima Math. J., 28 (1998), 261-308. |
[96] | R. Temam, A nonlinear eigenvalue problem: The shape of equilibrium of a confined plasma, Arch. Rational Mech. Anal., 60 (1975/76), 51-73. doi: 10.1007/BF00281469. |
[97] | ______, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[98] | Y. Zhao, Y. Wang and J. Shi, Exact multiplicity of solutions and S-shaped bifurcation curve for a class of semi-linear elliptic equations from a chemical reaction model, J. Math. Anal. Appl., 331 (2007), 263-278. doi: 10.1016/j.jmaa.2006.08.081. |