• Previous Article
    A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity
  • DCDS-B Home
  • This Issue
  • Next Article
    Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey
June  2018, 23(4): 1739-1756. doi: 10.3934/dcdsb.2018078

Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

2. 

Dipartimento di Matematica ed Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy

* Corresponding author

Received  June 2016 Revised  July 2017 Published  March 2018

In this paper we study a model for the heat conduction in a composite having a microscopic structure arranged in a periodic array. We obtain the macroscopic behaviour of the material and specifically the overall conductivity via an homogenization procedure, providing the equation satisfied by the effective temperature.

Citation: Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. AllaireA. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, (1995), 15-25. Google Scholar

[3]

G. Allaire and H. Hutridurga, Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-815. doi: 10.1093/imamat/hxs049. Google Scholar

[4]

G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis, 7 (1993), 81-95. Google Scholar

[5]

M. AmarD. Andreucci and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 56-77. doi: 10.1016/j.na.2016.05.018. Google Scholar

[6]

M. AmarD. Andreucci and D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700. doi: 10.4171/RLM/781. Google Scholar

[7]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1261-1295. doi: 10.1142/S0218202504003623. Google Scholar

[8]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787. doi: 10.1002/mma.709. Google Scholar

[9]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, Euro. Jnl. of Applied Mathematics, 20 (2009), 431-459. doi: 10.1017/S0956792509990052. Google Scholar

[10]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, J. Mechanics of Material and Structures, 4 (2009), 211-223. doi: 10.2140/jomms.2009.4.211. Google Scholar

[11]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, 9 (2010), 1131-1160. doi: 10.3934/cpaa.2010.9.1131. Google Scholar

[12]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential and Integral Equations, 26 (2013), 885-912. Google Scholar

[13]

M. Amar and R. Gianni, Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, (2018), submitted.Google Scholar

[14]

M. Amar and R. Gianni, Error estimate for a homogenization problem involving the Laplace-Beltrami operator, Mathematics and Mechanics of Complex Systems (2018), to appear, arXiv: 1705.04345v2.Google Scholar

[15]

M. Amar and R. Gianni, Existence and uniqueness for a two-scale system involving tangential operators, (2018), work in progress.Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM Journal on Mathematical Analysis, 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[17]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, Comptes Rendus Mathematique, 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9. Google Scholar

[18]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis, 40 (2008), 1585-1620. doi: 10.1137/080713148. Google Scholar

[19]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and robin problems in perforated domains, Comptes Rendus Mathematique, 342 (2006), 469-474. doi: 10.1016/j.crma.2006.01.028. Google Scholar

[20]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496. Google Scholar

[21]

P. Donato and Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Adv. Math.Sci. Appl., 22 (2012), 521-551. Google Scholar

[22]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906. doi: 10.1007/s11425-015-5103-4. Google Scholar

[23]

H. Ebadi-Dehaghani and M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanoparticles Technology, 23 (2012), 519-540. Google Scholar

[24]

L. FlodénA. HolmbomM. Olsson and J. Persson, Very weak multiscale convergence, Applied Mathematics Letters, 23 (2010), 1170-1173. doi: 10.1016/j.aml.2010.05.005. Google Scholar

[25]

L. Flodén, A. Holmbom and M. Olsson Lindberg, A strange term in the homogenization of parabolic equations with two spatial and two temporal scales, Journal of Function Spaces and Applications (2012), Art. ID 643458, 9 pp. Google Scholar

[26]

A. Holmbom, Homogenization of parabolic equations an alternative approach and some corrector-type results, Applications of Mathematics, 42 (1997), 321-343. doi: 10.1023/A:1023049608047. Google Scholar

[27]

S. Kemaloglu, G. Ozkoc and A. Aytac, Thermally conductive boron nitride/sebs/eva ternary composites: processing and characterization, Polymer Composites (Published online on http://onlinelibrary.wiley.com/doi/10.1002/pc.20925/full, 2009, Society of Plastic Engineers), (2010), 1398–1408.Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[29]

G. Nguetseng and J. Woukeng, Σ-convergence of nonlinear parabolic operators, Nonlinear Analysis, 66 (2007), 968-1004. doi: 10.1016/j.na.2005.12.035. Google Scholar

[30]

W. Phromma, A. Pongpilaipruet and R. Macaraphan, Preparation and thermal properties of PLA filled with natural rubber-PMA core-shell/magnetite nanoparticles, European Conference; 3rd, Chemical Engineering, Recent Advances in Engineering. Paris, (2012).Google Scholar

[31]

K. M. Shahil and A. A. Balandin, Graphene-based nanocomposites as highly efficient thermal interface materials, Graphene Based Thermal Interface Materials, (2011), 1-18. Google Scholar

[32]

V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sbornik: Mathematics, 191 (2000), 973-1014. Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[2]

G. AllaireA. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, (1995), 15-25. Google Scholar

[3]

G. Allaire and H. Hutridurga, Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-815. doi: 10.1093/imamat/hxs049. Google Scholar

[4]

G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis, 7 (1993), 81-95. Google Scholar

[5]

M. AmarD. Andreucci and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 56-77. doi: 10.1016/j.na.2016.05.018. Google Scholar

[6]

M. AmarD. Andreucci and D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700. doi: 10.4171/RLM/781. Google Scholar

[7]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1261-1295. doi: 10.1142/S0218202504003623. Google Scholar

[8]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787. doi: 10.1002/mma.709. Google Scholar

[9]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, Euro. Jnl. of Applied Mathematics, 20 (2009), 431-459. doi: 10.1017/S0956792509990052. Google Scholar

[10]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, J. Mechanics of Material and Structures, 4 (2009), 211-223. doi: 10.2140/jomms.2009.4.211. Google Scholar

[11]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, 9 (2010), 1131-1160. doi: 10.3934/cpaa.2010.9.1131. Google Scholar

[12]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential and Integral Equations, 26 (2013), 885-912. Google Scholar

[13]

M. Amar and R. Gianni, Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, (2018), submitted.Google Scholar

[14]

M. Amar and R. Gianni, Error estimate for a homogenization problem involving the Laplace-Beltrami operator, Mathematics and Mechanics of Complex Systems (2018), to appear, arXiv: 1705.04345v2.Google Scholar

[15]

M. Amar and R. Gianni, Existence and uniqueness for a two-scale system involving tangential operators, (2018), work in progress.Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM Journal on Mathematical Analysis, 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[17]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, Comptes Rendus Mathematique, 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9. Google Scholar

[18]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis, 40 (2008), 1585-1620. doi: 10.1137/080713148. Google Scholar

[19]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and robin problems in perforated domains, Comptes Rendus Mathematique, 342 (2006), 469-474. doi: 10.1016/j.crma.2006.01.028. Google Scholar

[20]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496. Google Scholar

[21]

P. Donato and Z. Yang, The periodic unfolding method for the wave equation in domains with holes, Adv. Math.Sci. Appl., 22 (2012), 521-551. Google Scholar

[22]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906. doi: 10.1007/s11425-015-5103-4. Google Scholar

[23]

H. Ebadi-Dehaghani and M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanoparticles Technology, 23 (2012), 519-540. Google Scholar

[24]

L. FlodénA. HolmbomM. Olsson and J. Persson, Very weak multiscale convergence, Applied Mathematics Letters, 23 (2010), 1170-1173. doi: 10.1016/j.aml.2010.05.005. Google Scholar

[25]

L. Flodén, A. Holmbom and M. Olsson Lindberg, A strange term in the homogenization of parabolic equations with two spatial and two temporal scales, Journal of Function Spaces and Applications (2012), Art. ID 643458, 9 pp. Google Scholar

[26]

A. Holmbom, Homogenization of parabolic equations an alternative approach and some corrector-type results, Applications of Mathematics, 42 (1997), 321-343. doi: 10.1023/A:1023049608047. Google Scholar

[27]

S. Kemaloglu, G. Ozkoc and A. Aytac, Thermally conductive boron nitride/sebs/eva ternary composites: processing and characterization, Polymer Composites (Published online on http://onlinelibrary.wiley.com/doi/10.1002/pc.20925/full, 2009, Society of Plastic Engineers), (2010), 1398–1408.Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[29]

G. Nguetseng and J. Woukeng, Σ-convergence of nonlinear parabolic operators, Nonlinear Analysis, 66 (2007), 968-1004. doi: 10.1016/j.na.2005.12.035. Google Scholar

[30]

W. Phromma, A. Pongpilaipruet and R. Macaraphan, Preparation and thermal properties of PLA filled with natural rubber-PMA core-shell/magnetite nanoparticles, European Conference; 3rd, Chemical Engineering, Recent Advances in Engineering. Paris, (2012).Google Scholar

[31]

K. M. Shahil and A. A. Balandin, Graphene-based nanocomposites as highly efficient thermal interface materials, Graphene Based Thermal Interface Materials, (2011), 1-18. Google Scholar

[32]

V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sbornik: Mathematics, 191 (2000), 973-1014. Google Scholar

Figure 1.  Left: the periodic cell $Y$. ${E_{{\rm{int}}}}$ is the shaded region and ${E_{{\rm{out}}}}$ is the white region. Right: the region
[1]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[2]

Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115

[3]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[4]

Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751

[5]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[6]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[7]

Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117

[8]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[9]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[10]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[11]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[12]

Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations & Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016

[13]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[14]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[15]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[16]

Martí Prats. Beltrami equations in the plane and Sobolev regularity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 319-332. doi: 10.3934/cpaa.2018018

[17]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 755-768. doi: 10.3934/dcdss.2020042

[18]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[19]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[20]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (36)
  • HTML views (222)
  • Cited by (0)

Other articles
by authors

[Back to Top]