
-
Previous Article
A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey
Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices
1. | Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy |
2. | Dipartimento di Matematica ed Informatica, Università di Firenze, Via Santa Marta 3, 50139 Firenze, Italy |
In this paper we study a model for the heat conduction in a composite having a microscopic structure arranged in a periodic array. We obtain the macroscopic behaviour of the material and specifically the overall conductivity via an homogenization procedure, providing the equation satisfied by the effective temperature.
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, (1995), 15-25. Google Scholar |
[3] |
G. Allaire and H. Hutridurga,
Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-815.
doi: 10.1093/imamat/hxs049. |
[4] |
G. Allaire and F. Murat,
Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis, 7 (1993), 81-95.
|
[5] |
M. Amar, D. Andreucci and D. Bellaveglia,
Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 56-77.
doi: 10.1016/j.na.2016.05.018. |
[6] |
M. Amar, D. Andreucci and D. Bellaveglia,
The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700.
doi: 10.4171/RLM/781. |
[7] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1261-1295.
doi: 10.1142/S0218202504003623. |
[8] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787.
doi: 10.1002/mma.709. |
[9] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, Euro. Jnl. of Applied Mathematics, 20 (2009), 431-459.
doi: 10.1017/S0956792509990052. |
[10] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, J. Mechanics of Material and Structures, 4 (2009), 211-223.
doi: 10.2140/jomms.2009.4.211. |
[11] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, 9 (2010), 1131-1160.
doi: 10.3934/cpaa.2010.9.1131. |
[12] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential and Integral Equations, 26 (2013), 885-912.
|
[13] |
M. Amar and R. Gianni, Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, (2018), submitted. Google Scholar |
[14] |
M. Amar and R. Gianni, Error estimate for a homogenization problem involving the Laplace-Beltrami operator, Mathematics and Mechanics of Complex Systems (2018), to appear, arXiv: 1705.04345v2. Google Scholar |
[15] |
M. Amar and R. Gianni, Existence and uniqueness for a two-scale system involving tangential operators, (2018), work in progress. Google Scholar |
[16] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki,
The periodic unfolding method in domains with holes, SIAM Journal on Mathematical Analysis, 44 (2012), 718-760.
doi: 10.1137/100817942. |
[17] |
D. Cioranescu, A. Damlamian and G. Griso,
Periodic unfolding and homogenization, Comptes Rendus Mathematique, 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9. |
[18] |
D. Cioranescu, A. Damlamian and G. Griso,
The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis, 40 (2008), 1585-1620.
doi: 10.1137/080713148. |
[19] |
D. Cioranescu, P. Donato and R. Zaki,
Periodic unfolding and robin problems in perforated domains, Comptes Rendus Mathematique, 342 (2006), 469-474.
doi: 10.1016/j.crma.2006.01.028. |
[20] |
D. Cioranescu, P. Donato and R. Zaki,
The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496.
|
[21] |
P. Donato and Z. Yang,
The periodic unfolding method for the wave equation in domains with holes, Adv. Math.Sci. Appl., 22 (2012), 521-551.
|
[22] |
P. Donato and Z. Yang,
The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906.
doi: 10.1007/s11425-015-5103-4. |
[23] |
H. Ebadi-Dehaghani and M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanoparticles Technology, 23 (2012), 519-540. Google Scholar |
[24] |
L. Flodén, A. Holmbom, M. Olsson and J. Persson,
Very weak multiscale convergence, Applied Mathematics Letters, 23 (2010), 1170-1173.
doi: 10.1016/j.aml.2010.05.005. |
[25] |
L. Flodén, A. Holmbom and M. Olsson Lindberg, A strange term in the homogenization of parabolic equations with two spatial and two temporal scales,
Journal of Function Spaces and Applications (2012), Art. ID 643458, 9 pp. |
[26] |
A. Holmbom,
Homogenization of parabolic equations an alternative approach and some corrector-type results, Applications of Mathematics, 42 (1997), 321-343.
doi: 10.1023/A:1023049608047. |
[27] |
S. Kemaloglu, G. Ozkoc and A. Aytac, Thermally conductive boron nitride/sebs/eva ternary composites: processing and characterization, Polymer Composites (Published online on http://onlinelibrary.wiley.com/doi/10.1002/pc.20925/full, 2009, Society of Plastic Engineers), (2010), 1398–1408. Google Scholar |
[28] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[29] |
G. Nguetseng and J. Woukeng,
Σ-convergence of nonlinear parabolic operators, Nonlinear Analysis, 66 (2007), 968-1004.
doi: 10.1016/j.na.2005.12.035. |
[30] |
W. Phromma, A. Pongpilaipruet and R. Macaraphan, Preparation and thermal properties of PLA filled with natural rubber-PMA core-shell/magnetite nanoparticles, European Conference; 3rd, Chemical Engineering, Recent Advances in Engineering. Paris, (2012). Google Scholar |
[31] |
K. M. Shahil and A. A. Balandin, Graphene-based nanocomposites as highly efficient thermal interface materials, Graphene Based Thermal Interface Materials, (2011), 1-18. Google Scholar |
[32] |
V. Zhikov,
On an extension of the method of two-scale convergence and its applications, Sbornik: Mathematics, 191 (2000), 973-1014.
|
show all references
References:
[1] |
G. Allaire,
Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084. |
[2] |
G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, (1995), 15-25. Google Scholar |
[3] |
G. Allaire and H. Hutridurga,
Homogenization of reactive flows in porous media and competition between bulk and surface diffusion, IMA Journal of Applied Mathematics, 77 (2012), 788-815.
doi: 10.1093/imamat/hxs049. |
[4] |
G. Allaire and F. Murat,
Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis, 7 (1993), 81-95.
|
[5] |
M. Amar, D. Andreucci and D. Bellaveglia,
Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Analysis: Theory, Methods and Applications, 153 (2017), 56-77.
doi: 10.1016/j.na.2016.05.018. |
[6] |
M. Amar, D. Andreucci and D. Bellaveglia,
The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700.
doi: 10.4171/RLM/781. |
[7] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1261-1295.
doi: 10.1142/S0218202504003623. |
[8] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
On a hierarchy of models for electrical conduction in biological tissues, Mathematical Methods in the Applied Sciences, 29 (2006), 767-787.
doi: 10.1002/mma.709. |
[9] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, Euro. Jnl. of Applied Mathematics, 20 (2009), 431-459.
doi: 10.1017/S0956792509990052. |
[10] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, J. Mechanics of Material and Structures, 4 (2009), 211-223.
doi: 10.2140/jomms.2009.4.211. |
[11] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
Homogenization limit and asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range, Communications on Pure and Applied Analysis, 9 (2010), 1131-1160.
doi: 10.3934/cpaa.2010.9.1131. |
[12] |
M. Amar, D. Andreucci, P. Bisegna and R. Gianni,
A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differential and Integral Equations, 26 (2013), 885-912.
|
[13] |
M. Amar and R. Gianni, Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator, (2018), submitted. Google Scholar |
[14] |
M. Amar and R. Gianni, Error estimate for a homogenization problem involving the Laplace-Beltrami operator, Mathematics and Mechanics of Complex Systems (2018), to appear, arXiv: 1705.04345v2. Google Scholar |
[15] |
M. Amar and R. Gianni, Existence and uniqueness for a two-scale system involving tangential operators, (2018), work in progress. Google Scholar |
[16] |
D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki,
The periodic unfolding method in domains with holes, SIAM Journal on Mathematical Analysis, 44 (2012), 718-760.
doi: 10.1137/100817942. |
[17] |
D. Cioranescu, A. Damlamian and G. Griso,
Periodic unfolding and homogenization, Comptes Rendus Mathematique, 335 (2002), 99-104.
doi: 10.1016/S1631-073X(02)02429-9. |
[18] |
D. Cioranescu, A. Damlamian and G. Griso,
The periodic unfolding method in homogenization, SIAM Journal on Mathematical Analysis, 40 (2008), 1585-1620.
doi: 10.1137/080713148. |
[19] |
D. Cioranescu, P. Donato and R. Zaki,
Periodic unfolding and robin problems in perforated domains, Comptes Rendus Mathematique, 342 (2006), 469-474.
doi: 10.1016/j.crma.2006.01.028. |
[20] |
D. Cioranescu, P. Donato and R. Zaki,
The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496.
|
[21] |
P. Donato and Z. Yang,
The periodic unfolding method for the wave equation in domains with holes, Adv. Math.Sci. Appl., 22 (2012), 521-551.
|
[22] |
P. Donato and Z. Yang,
The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906.
doi: 10.1007/s11425-015-5103-4. |
[23] |
H. Ebadi-Dehaghani and M. Nazempour, Thermal conductivity of nanoparticles filled polymers, Smart Nanoparticles Technology, 23 (2012), 519-540. Google Scholar |
[24] |
L. Flodén, A. Holmbom, M. Olsson and J. Persson,
Very weak multiscale convergence, Applied Mathematics Letters, 23 (2010), 1170-1173.
doi: 10.1016/j.aml.2010.05.005. |
[25] |
L. Flodén, A. Holmbom and M. Olsson Lindberg, A strange term in the homogenization of parabolic equations with two spatial and two temporal scales,
Journal of Function Spaces and Applications (2012), Art. ID 643458, 9 pp. |
[26] |
A. Holmbom,
Homogenization of parabolic equations an alternative approach and some corrector-type results, Applications of Mathematics, 42 (1997), 321-343.
doi: 10.1023/A:1023049608047. |
[27] |
S. Kemaloglu, G. Ozkoc and A. Aytac, Thermally conductive boron nitride/sebs/eva ternary composites: processing and characterization, Polymer Composites (Published online on http://onlinelibrary.wiley.com/doi/10.1002/pc.20925/full, 2009, Society of Plastic Engineers), (2010), 1398–1408. Google Scholar |
[28] |
G. Nguetseng,
A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623.
doi: 10.1137/0520043. |
[29] |
G. Nguetseng and J. Woukeng,
Σ-convergence of nonlinear parabolic operators, Nonlinear Analysis, 66 (2007), 968-1004.
doi: 10.1016/j.na.2005.12.035. |
[30] |
W. Phromma, A. Pongpilaipruet and R. Macaraphan, Preparation and thermal properties of PLA filled with natural rubber-PMA core-shell/magnetite nanoparticles, European Conference; 3rd, Chemical Engineering, Recent Advances in Engineering. Paris, (2012). Google Scholar |
[31] |
K. M. Shahil and A. A. Balandin, Graphene-based nanocomposites as highly efficient thermal interface materials, Graphene Based Thermal Interface Materials, (2011), 1-18. Google Scholar |
[32] |
V. Zhikov,
On an extension of the method of two-scale convergence and its applications, Sbornik: Mathematics, 191 (2000), 973-1014.
|

[1] |
A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709 |
[2] |
Andrea Bonito, Roland Glowinski. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2115-2126. doi: 10.3934/cpaa.2014.13.2115 |
[3] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020040 |
[4] |
Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249 |
[5] |
Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751 |
[6] |
Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 |
[7] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[8] |
Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117 |
[9] |
Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965 |
[10] |
Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024 |
[11] |
Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007 |
[12] |
Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031 |
[13] |
Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505 |
[14] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039 |
[15] |
Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations & Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016 |
[16] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[17] |
Martí Prats. Beltrami equations in the plane and Sobolev regularity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 319-332. doi: 10.3934/cpaa.2018018 |
[18] |
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 755-768. doi: 10.3934/dcdss.2020042 |
[19] |
Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291 |
[20] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]