June  2018, 23(4): 1757-1766. doi: 10.3934/dcdsb.2018079

A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China

2. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

3. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

F. Li is the corresponding author

Received  August 2016 Revised  October 2017 Published  March 2018

We establish a regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity and vacuum in a bounded domain.

Citation: Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079
References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. doi: 10.1007/BF01759640. Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. Google Scholar

[3]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differ. Equ., 5 (1980), 773-789. doi: 10.1080/03605308008820154. Google Scholar

[4]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629. doi: 10.1007/s00220-006-0052-y. Google Scholar

[5]

J. FanS. Jiang and Y. Ou, A blow-up criterion for the compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non linéaire, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012. Google Scholar

[6]

J. FanF. Li and G. Nakamura, A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Meth. Appl. Sci., 38 (2015), 2073-2080. doi: 10.1002/mma.3205. Google Scholar

[7]

J. FanF. LiG. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858-2875. doi: 10.1016/j.jde.2014.01.021. Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[9]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660. doi: 10.1016/j.na.2007.10.005. Google Scholar

[10]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2. Google Scholar

[11]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Commun. Math. Phys., 324 (2013), 147-171. doi: 10.1007/s00220-013-1791-1. Google Scholar

[12]

X. Huang and Y. Wang, L continuation principle to the non-baratropic non-resistive magnetohydrodynamic equations without heat conductivity, Math. Methods Appl. Sci., 39 (2016), 4234-4245. doi: 10.1002/mma.3860. Google Scholar

[13]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265. doi: 10.1016/j.jde.2011.07.036. Google Scholar

[14]

S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asympt. Anal., 95 (2015), 161-185. doi: 10.3233/ASY-151321. Google Scholar

[15]

S. JiangQ. Ju and F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365. doi: 10.1088/0951-7715/25/5/1351. Google Scholar

[16]

S. JiangQ. JuF. Li and Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420. doi: 10.1016/j.aim.2014.03.022. Google Scholar

[17]

P. -L. Lions, Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Google Scholar

[18]

L. LuY. Chen and B. Huang, Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows, Nonlinear Anal., 139 (2016), 55-74. doi: 10.1016/j.na.2016.02.021. Google Scholar

[19]

X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519-538. doi: 10.1007/s00033-012-0245-5. Google Scholar

[20]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Rational Mech. Anal., 201 (2011), 727-742. doi: 10.1007/s00205-011-0407-1. Google Scholar

[21]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pure Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001. Google Scholar

[22]

W. Von Wahl, Estimating ∇u by div u and curl u, Math. Meth. Appl. Sci., 15 (1992), 123-143. doi: 10.1002/mma.1670150206. Google Scholar

[23]

H. Wen and C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018. Google Scholar

show all references

References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. doi: 10.1007/BF01759640. Google Scholar

[2]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. Google Scholar

[3]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differ. Equ., 5 (1980), 773-789. doi: 10.1080/03605308008820154. Google Scholar

[4]

B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629. doi: 10.1007/s00220-006-0052-y. Google Scholar

[5]

J. FanS. Jiang and Y. Ou, A blow-up criterion for the compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non linéaire, 27 (2010), 337-350. doi: 10.1016/j.anihpc.2009.09.012. Google Scholar

[6]

J. FanF. Li and G. Nakamura, A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Meth. Appl. Sci., 38 (2015), 2073-2080. doi: 10.1002/mma.3205. Google Scholar

[7]

J. FanF. LiG. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858-2875. doi: 10.1016/j.jde.2014.01.021. Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[9]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660. doi: 10.1016/j.na.2007.10.005. Google Scholar

[10]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284. doi: 10.1007/s00220-008-0497-2. Google Scholar

[11]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Commun. Math. Phys., 324 (2013), 147-171. doi: 10.1007/s00220-013-1791-1. Google Scholar

[12]

X. Huang and Y. Wang, L continuation principle to the non-baratropic non-resistive magnetohydrodynamic equations without heat conductivity, Math. Methods Appl. Sci., 39 (2016), 4234-4245. doi: 10.1002/mma.3860. Google Scholar

[13]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265. doi: 10.1016/j.jde.2011.07.036. Google Scholar

[14]

S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asympt. Anal., 95 (2015), 161-185. doi: 10.3233/ASY-151321. Google Scholar

[15]

S. JiangQ. Ju and F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365. doi: 10.1088/0951-7715/25/5/1351. Google Scholar

[16]

S. JiangQ. JuF. Li and Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420. doi: 10.1016/j.aim.2014.03.022. Google Scholar

[17]

P. -L. Lions, Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Google Scholar

[18]

L. LuY. Chen and B. Huang, Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows, Nonlinear Anal., 139 (2016), 55-74. doi: 10.1016/j.na.2016.02.021. Google Scholar

[19]

X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519-538. doi: 10.1007/s00033-012-0245-5. Google Scholar

[20]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Rational Mech. Anal., 201 (2011), 727-742. doi: 10.1007/s00205-011-0407-1. Google Scholar

[21]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pure Appl., 95 (2011), 36-47. doi: 10.1016/j.matpur.2010.08.001. Google Scholar

[22]

W. Von Wahl, Estimating ∇u by div u and curl u, Math. Meth. Appl. Sci., 15 (1992), 123-143. doi: 10.1002/mma.1670150206. Google Scholar

[23]

H. Wen and C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534-572. doi: 10.1016/j.aim.2013.07.018. Google Scholar

[1]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[2]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[3]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[4]

Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739

[5]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[6]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[7]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[8]

Hong Cai, Zhong Tan. Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1847-1868. doi: 10.3934/dcds.2016.36.1847

[9]

Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069

[10]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[11]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[12]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[13]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[14]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[15]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[16]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[17]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[18]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[19]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[20]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (43)
  • HTML views (194)
  • Cited by (0)

Other articles
by authors

[Back to Top]