We establish a regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity and vacuum in a bounded domain.
Citation: |
[1] |
P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.
doi: 10.1007/BF01759640.![]() ![]() ![]() |
[2] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.
doi: 10.1002/cpa.3160120405.![]() ![]() ![]() |
[3] |
H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differ. Equ., 5 (1980), 773-789.
doi: 10.1080/03605308008820154.![]() ![]() ![]() |
[4] |
B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595-629.
doi: 10.1007/s00220-006-0052-y.![]() ![]() ![]() |
[5] |
J. Fan, S. Jiang and Y. Ou, A blow-up criterion for the compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non linéaire, 27 (2010), 337-350.
doi: 10.1016/j.anihpc.2009.09.012.![]() ![]() ![]() |
[6] |
J. Fan, F. Li and G. Nakamura, A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Meth. Appl. Sci., 38 (2015), 2073-2080.
doi: 10.1002/mma.3205.![]() ![]() ![]() |
[7] |
J. Fan, F. Li, G. Nakamura and Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations, J. Differential Equations, 256 (2014), 2858-2875.
doi: 10.1016/j.jde.2014.01.021.![]() ![]() ![]() |
[8] |
J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392-409.
doi: 10.1016/j.nonrwa.2007.10.001.![]() ![]() ![]() |
[9] |
J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637-3660.
doi: 10.1016/j.na.2007.10.005.![]() ![]() ![]() |
[10] |
X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.
doi: 10.1007/s00220-008-0497-2.![]() ![]() ![]() |
[11] |
X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Commun. Math. Phys., 324 (2013), 147-171.
doi: 10.1007/s00220-013-1791-1.![]() ![]() ![]() |
[12] |
X. Huang and Y. Wang, L∞ continuation principle to the non-baratropic non-resistive magnetohydrodynamic equations without heat conductivity, Math. Methods Appl. Sci., 39 (2016), 4234-4245.
doi: 10.1002/mma.3860.![]() ![]() ![]() |
[13] |
T. Huang, C. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.
doi: 10.1016/j.jde.2011.07.036.![]() ![]() ![]() |
[14] |
S. Jiang and F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asympt. Anal., 95 (2015), 161-185.
doi: 10.3233/ASY-151321.![]() ![]() ![]() |
[15] |
S. Jiang, Q. Ju and F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.
doi: 10.1088/0951-7715/25/5/1351.![]() ![]() ![]() |
[16] |
S. Jiang, Q. Ju, F. Li and Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.
doi: 10.1016/j.aim.2014.03.022.![]() ![]() ![]() |
[17] |
P. -L. Lions, Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.
![]() ![]() |
[18] |
L. Lu, Y. Chen and B. Huang, Blow-up criterion for two-dimensional viscous, compressible, and heat conducting magnetohydrodynamic flows, Nonlinear Anal., 139 (2016), 55-74.
doi: 10.1016/j.na.2016.02.021.![]() ![]() ![]() |
[19] |
X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations, Z. Angew. Math. Phys., 64 (2013), 519-538.
doi: 10.1007/s00033-012-0245-5.![]() ![]() ![]() |
[20] |
Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Rational Mech. Anal., 201 (2011), 727-742.
doi: 10.1007/s00205-011-0407-1.![]() ![]() ![]() |
[21] |
Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pure Appl., 95 (2011), 36-47.
doi: 10.1016/j.matpur.2010.08.001.![]() ![]() ![]() |
[22] |
W. Von Wahl, Estimating ∇u by div u and curl u, Math. Meth. Appl. Sci., 15 (1992), 123-143.
doi: 10.1002/mma.1670150206.![]() ![]() ![]() |
[23] |
H. Wen and C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534-572.
doi: 10.1016/j.aim.2013.07.018.![]() ![]() ![]() |