
-
Previous Article
Singular perturbed renormalization group theory and its application to highly oscillatory problems
- DCDS-B Home
- This Issue
-
Next Article
Nonlocal elliptic system arising from the growth of cancer stem cells
Parking 3-sphere swimmer I. Energy minimizing strokes
CMAP, Centre de Mathématiques Appliquées, École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France |
The paper is about the parking 3-sphere swimmer (sPr3), a low-Reynolds number model swimmer composed of three balls of equal radii. The three balls can move along three horizontal axes (supported in the same plane) that mutually meet at the center of sPr3 with angles of 120°. The governing dynamical system is introduced and the implications of its geometric symmetries revealed. It is then shown that, in the first order range of small strokes, optimal periodic strokes are ellipses embedded in 3d space, i.e., closed curves of the form $t ∈ [0, 2 π] \mapsto (\cos t) u + (\sin t) v$ for suitable vectors u and v of $\mathbb{R}^3$. A simple analytic expression for the vectors u and v is derived.
References:
[1] |
F. Alouges, A. DeSimone and A. Lefebvre-Lepot,
Optimal strokes for low reynolds number swimmers: An example, Journal of Nonlinear Science, 18 (2008), 277-302.
doi: 10.1007/s00332-007-9013-7. |
[2] |
F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre-Lepot and B. Merlet,
Optimally swimming stokesian robots, Discrete and Continuous Dynamical Systems-Series B (DCDS-B), 18 (2013), 1189-1215.
doi: 10.3934/dcdsb.2013.18.1189. |
[3] |
F. Alouges, A. DeSimone and A. Lefebvre,
Optimal strokes for axisymmetric microswimmers, The European Physical Journal E, 28 (2009), 279-284.
|
[4] |
J. E. Avron, O. Gat and O. Kenneth, Optimal swimming at low reynolds numbers, Physical Review Letters, 93 (2004), 186001.
doi: 10.1103/PhysRevLett.93.186001. |
[5] |
J. E. Avron and O. Raz, A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin, New Journal of Physics, 10 (2008), 63016.
doi: 10.1088/1367-2630/10/6/063016. |
[6] |
L. E. Becker, S. A. Koehler and H. A. Stone,
On self-propulsion of micro-machines at low reynolds number: Purcell's three-link swimmer, Journal of Fluid Mechanics, 490 (2003), 15-35.
doi: 10.1017/S0022112003005184. |
[7] |
A. DeSimone, F. Alouges and A. Lefebvre-Lepot,
Biological fluid dynamics, non-linear partial differential equations, in Mathematics of Complexity and Dynamical Systems, SpringerVerlag, New York, (2012), 26-31.
doi: 10.1007/978-1-4614-1806-1_3. |
[8] |
R. Dreyfus, J. Baudry and H. A. Stone,
Purcell's ''rotator'': Mechanical rotation at low reynolds number, The European Physical Journal B-Condensed Matter and Complex Systems, 47 (2005), 161-164.
doi: 10.1140/epjb/e2005-00302-5. |
[9] |
L. Giraldi, P. Martinon and M. Zoppello, Optimal design of purcell's three-link swimmer, Physical Review E, 91 (2015), 23012, 6pp.
doi: 10.1103/PhysRevE.91.023012. |
[10] |
E. Gutman and Y. Or,
Symmetries and gaits for Purcell's three-link microswimmer model, IEEE Transactions on Robotics, 32 (2016), 53-69.
doi: 10.1109/TRO.2015.2500442. |
[11] |
E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, 72 (2009), 96601, 36pp.
doi: 10.1088/0034-4885/72/9/096601. |
[12] |
A. Lefebvre-Lepot and B. Merlet,
A stokesian submarine, ESAIM: Proceedings, 28 (2009), 150-161.
doi: 10.1051/proc/2009044. |
[13] |
M. J. Lighthill,
On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers, Communications on Pure and Applied Mathematics, 5 (1952), 109-118.
doi: 10.1002/cpa.3160050201. |
[14] |
A. Najafi and R. Golestanian, Simple swimmer at low reynolds number: Three linked spheres, Physical Review E, 69 (2004), 62901.
doi: 10.1103/PhysRevE.69.062901. |
[15] |
E. M. Purcell, Life at low reynolds number, AIP Conference Proceedings, 28 (1976), p49.
doi: 10.1063/1.30370. |
[16] | |
[17] |
A. Shapere and F. Wilczek,
Geometry of self-propulsion at low reynolds number, Journal of Fluid Mechanics, 198 (1989), 557-585.
doi: 10.1017/S002211208900025X. |
[18] |
A. Shapere and F. Wilczek,
Efficiencies of self-propulsion at low reynolds number, Journal of Fluid Mechanics, 198 (1989), 587-599.
doi: 10.1017/S0022112089000261. |
[19] |
D. Tam and A. E. Hosoi, Optimal stroke patterns for Purcell's three-link swimmer, Physical Review Letters, 98 (2007), 68105.
doi: 10.1103/PhysRevLett.98.068105. |
[20] |
G. Taylor,
Analysis of the swimming of microscopic organisms, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 209 (1951), 447-461.
doi: 10.1098/rspa.1951.0218. |
show all references
References:
[1] |
F. Alouges, A. DeSimone and A. Lefebvre-Lepot,
Optimal strokes for low reynolds number swimmers: An example, Journal of Nonlinear Science, 18 (2008), 277-302.
doi: 10.1007/s00332-007-9013-7. |
[2] |
F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre-Lepot and B. Merlet,
Optimally swimming stokesian robots, Discrete and Continuous Dynamical Systems-Series B (DCDS-B), 18 (2013), 1189-1215.
doi: 10.3934/dcdsb.2013.18.1189. |
[3] |
F. Alouges, A. DeSimone and A. Lefebvre,
Optimal strokes for axisymmetric microswimmers, The European Physical Journal E, 28 (2009), 279-284.
|
[4] |
J. E. Avron, O. Gat and O. Kenneth, Optimal swimming at low reynolds numbers, Physical Review Letters, 93 (2004), 186001.
doi: 10.1103/PhysRevLett.93.186001. |
[5] |
J. E. Avron and O. Raz, A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin, New Journal of Physics, 10 (2008), 63016.
doi: 10.1088/1367-2630/10/6/063016. |
[6] |
L. E. Becker, S. A. Koehler and H. A. Stone,
On self-propulsion of micro-machines at low reynolds number: Purcell's three-link swimmer, Journal of Fluid Mechanics, 490 (2003), 15-35.
doi: 10.1017/S0022112003005184. |
[7] |
A. DeSimone, F. Alouges and A. Lefebvre-Lepot,
Biological fluid dynamics, non-linear partial differential equations, in Mathematics of Complexity and Dynamical Systems, SpringerVerlag, New York, (2012), 26-31.
doi: 10.1007/978-1-4614-1806-1_3. |
[8] |
R. Dreyfus, J. Baudry and H. A. Stone,
Purcell's ''rotator'': Mechanical rotation at low reynolds number, The European Physical Journal B-Condensed Matter and Complex Systems, 47 (2005), 161-164.
doi: 10.1140/epjb/e2005-00302-5. |
[9] |
L. Giraldi, P. Martinon and M. Zoppello, Optimal design of purcell's three-link swimmer, Physical Review E, 91 (2015), 23012, 6pp.
doi: 10.1103/PhysRevE.91.023012. |
[10] |
E. Gutman and Y. Or,
Symmetries and gaits for Purcell's three-link microswimmer model, IEEE Transactions on Robotics, 32 (2016), 53-69.
doi: 10.1109/TRO.2015.2500442. |
[11] |
E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, 72 (2009), 96601, 36pp.
doi: 10.1088/0034-4885/72/9/096601. |
[12] |
A. Lefebvre-Lepot and B. Merlet,
A stokesian submarine, ESAIM: Proceedings, 28 (2009), 150-161.
doi: 10.1051/proc/2009044. |
[13] |
M. J. Lighthill,
On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers, Communications on Pure and Applied Mathematics, 5 (1952), 109-118.
doi: 10.1002/cpa.3160050201. |
[14] |
A. Najafi and R. Golestanian, Simple swimmer at low reynolds number: Three linked spheres, Physical Review E, 69 (2004), 62901.
doi: 10.1103/PhysRevE.69.062901. |
[15] |
E. M. Purcell, Life at low reynolds number, AIP Conference Proceedings, 28 (1976), p49.
doi: 10.1063/1.30370. |
[16] | |
[17] |
A. Shapere and F. Wilczek,
Geometry of self-propulsion at low reynolds number, Journal of Fluid Mechanics, 198 (1989), 557-585.
doi: 10.1017/S002211208900025X. |
[18] |
A. Shapere and F. Wilczek,
Efficiencies of self-propulsion at low reynolds number, Journal of Fluid Mechanics, 198 (1989), 587-599.
doi: 10.1017/S0022112089000261. |
[19] |
D. Tam and A. E. Hosoi, Optimal stroke patterns for Purcell's three-link swimmer, Physical Review Letters, 98 (2007), 68105.
doi: 10.1103/PhysRevLett.98.068105. |
[20] |
G. Taylor,
Analysis of the swimming of microscopic organisms, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 209 (1951), 447-461.
doi: 10.1098/rspa.1951.0218. |



[1] |
Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303 |
[2] |
Jorge San Martín, Takéo Takahashi, Marius Tucsnak. An optimal control approach to ciliary locomotion. Mathematical Control and Related Fields, 2016, 6 (2) : 293-334. doi: 10.3934/mcrf.2016005 |
[3] |
Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Steady free fall of one-dimensional bodies in a hyperviscous fluid at low Reynolds number. Evolution Equations and Control Theory, 2014, 3 (3) : 429-445. doi: 10.3934/eect.2014.3.429 |
[4] |
Tehuan Chen, Chao Xu, Zhigang Ren. Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1251-1269. doi: 10.3934/jimo.2018052 |
[5] |
Serge Nicaise, Simon Stingelin, Fredi Tröltzsch. Optimal control of magnetic fields in flow measurement. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 579-605. doi: 10.3934/dcdss.2015.8.579 |
[6] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
[7] |
Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control and Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008 |
[8] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[9] |
Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397 |
[10] |
Alex Bombrun, Jean-Baptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2-body control system. Conference Publications, 2007, 2007 (Special) : 122-129. doi: 10.3934/proc.2007.2007.122 |
[11] |
Clara Rojas, Juan Belmonte-Beitia, Víctor M. Pérez-García, Helmut Maurer. Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1895-1915. doi: 10.3934/dcdsb.2016028 |
[12] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5355-5382. doi: 10.3934/dcdsb.2020347 |
[13] |
Roberto Triggiani, Xiang Wan. From low to high-and lower-optimal regularity of the SMGTJ equation with Dirichlet and Neumann boundary control, and with point control, via explicit representation formulae. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022007 |
[14] |
Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925 |
[15] |
Jingang Zhai, Guangmao Jiang, Jianxiong Ye. Optimal dilution strategy for a microbial continuous culture based on the biological robustness. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 59-69. doi: 10.3934/naco.2015.5.59 |
[16] |
Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1 |
[17] |
Francesco Fassò, Simone Passarella, Marta Zoppello. Control of locomotion systems and dynamics in relative periodic orbits. Journal of Geometric Mechanics, 2020, 12 (3) : 395-420. doi: 10.3934/jgm.2020022 |
[18] |
Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135 |
[19] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578 |
[20] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]