[1]
|
D. Arnold, F. Brezzi and D. Marini, A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate, J. Sci. Comput., 22 (2005), 25-45.
doi: 10.1007/s10915-004-4134-8.
|
[2]
|
D. Arnold, F. Brezzi, R. Falk and D. Marini, Locking-free Reissner-Mindlin elements without reduced integration, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3660-3671.
doi: 10.1016/j.cma.2006.10.023.
|
[3]
|
D. Arnold and R. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290.
doi: 10.1137/0726074.
|
[4]
|
D. N. Arnold and X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model, Adv. in Comp. Math., 7 (1997), 337-360.
doi: 10.1023/A:1018907205385.
|
[5]
|
S. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comput., 73 (2004), 1067-1087.
|
[6]
|
F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), 151-158.
doi: 10.1090/S0025-5718-1986-0842127-7.
|
[7]
|
F. Brezzi, K. Bathe and M. Fortin, Mixed interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 28 (1989), 1787-1801.
doi: 10.1002/nme.1620280806.
|
[8]
|
G. Brezzi, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 1 (1991), 125-151.
doi: 10.1142/S0218202591000083.
|
[9]
|
D. Chapelle and R. Stenberg, An optimal low-order locking-free finite element method for Reissner-Mindlin plates, Mathematical Models and Methods in Applied Sciences, 8 (1998), 407-430.
doi: 10.1142/S0218202598000172.
|
[10]
|
R. Duran and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), 561-573.
doi: 10.1090/S0025-5718-1992-1106965-0.
|
[11]
|
R. Falk and T. Tu, Locking-free finite elements for the Reissner-Mindlin plate, Math. Comp., 69 (2000), 911-928.
|
[12]
|
P. Hansbo, D. Heintz and M. Larson, A finite element method with discontinuous rotations for the Mindlin-Reissner plate model, Comput. Methods Appl. Mech. Engrg., 200 (2011), 638-648.
doi: 10.1016/j.cma.2010.09.009.
|
[13]
|
C. Lovadina and D. Marini, Nonconforming locking-free finite elements for Reissner-Mindlin plates, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3448-3460.
doi: 10.1016/j.cma.2005.06.025.
|
[14]
|
L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, Journal of Computational and Applied Mathematics, 285 (2015), 45-58.
doi: 10.1016/j.cam.2015.02.001.
|
[15]
|
L. Mu, J. Wang and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.
|
[16]
|
R. Pierre, Convergence Properties and Numerical Approximation of the Solution of the Mindlin Plate Bending Problem, Math Comp., 51 (1988), 15-25.
doi: 10.1090/S0025-5718-1988-0942141-9.
|
[17]
|
J. Wang and X. Ye, A superconvergent finite element scheme for the reissner-mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.
|
[18]
|
J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math, 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003.
|
[19]
|
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., Math. Comp., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4.
|
[20]
|
X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386.
doi: 10.1023/A:1016693613626.
|
[21]
|
X. Ye, A Rectangular Element for the Reissner-Mindlin Plate, Numer. Method for PDE, 16 (2000), 184-193.
doi: 10.1002/(SICI)1098-2426(200003)16:2<184::AID-NUM3>3.0.CO;2-B.
|