September  2018, 23(7): 2709-2725. doi: 10.3934/dcdsb.2018088

Two-step collocation methods for fractional differential equations

Dipartimento di Matematica, Università di Salerno, Fisciano (SA), Italy

* Corresponding author

Received  October 2016 Revised  October 2017 Published  March 2018

Fund Project: The work is supported by GNCS-Indam project.

We propose two-step collocation methods for the numerical solution of fractional differential equations. These methods increase the order of convergence of one-step collocation methods, with the same number of collocation points. Moreover, they are continuous methods, i.e. they furnish an approximation of the solution at each point of the time interval. We describe the derivation of two-step collocation methods and analyse convergence. Some numerical experiments confirm theoretical expectations.

Citation: Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088
References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491.   Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189.  doi: 10.3846/13926292.2012.655789.  Google Scholar

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307.  doi: 10.3846/13926292.2013.785039.  Google Scholar

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986.  Google Scholar

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.  Google Scholar

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic).  doi: 10.1137/S0036142900376560.  Google Scholar

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785.  doi: 10.1016/j.amc.2013.07.012.  Google Scholar

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480.  doi: 10.1007/s11075-010-9365-1.  Google Scholar

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.  Google Scholar

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324.  doi: 10.1016/j.apnum.2012.06.007.  Google Scholar

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518.  doi: 10.1016/j.jmaa.2004.07.039.  Google Scholar

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334.  doi: 10.1016/j.apnum.2012.06.008.  Google Scholar

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806.  doi: 10.1016/j.mechmat.2011.08.016.  Google Scholar

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160.   Google Scholar

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications.  doi: 10.1023/A:1016592219341.  Google Scholar

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.  Google Scholar

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699.  doi: 10.1114/1.1574026.  Google Scholar

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290.  doi: 10.1080/00207160802624331.  Google Scholar

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097.  doi: 10.1016/j.cam.2010.07.008.  Google Scholar

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98.  doi: 10.1016/0377-0427(88)90332-9.  Google Scholar

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems.  Google Scholar

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7.  Google Scholar

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127.  doi: 10.1016/j.jcp.2015.01.025.  Google Scholar

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8.  Google Scholar

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979.  Google Scholar

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144.  doi: 10.1007/BF01932138.  Google Scholar

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79.  doi: 10.1090/S0025-5718-1989-0971403-5.  Google Scholar

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469.  doi: 10.1090/S0025-5718-1985-0804935-7.  Google Scholar

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.  Google Scholar

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833.  Google Scholar

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514.  doi: 10.1016/j.cam.2010.10.054.  Google Scholar

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230.  doi: 10.1016/j.cam.2013.04.049.  Google Scholar

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6.  doi: 10.1016/j.amc.2005.09.059.  Google Scholar

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993.  Google Scholar

show all references

References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491.   Google Scholar

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.  Google Scholar

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189.  doi: 10.3846/13926292.2012.655789.  Google Scholar

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307.  doi: 10.3846/13926292.2013.785039.  Google Scholar

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986.  Google Scholar

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.  Google Scholar

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic).  doi: 10.1137/S0036142900376560.  Google Scholar

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785.  doi: 10.1016/j.amc.2013.07.012.  Google Scholar

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480.  doi: 10.1007/s11075-010-9365-1.  Google Scholar

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.  Google Scholar

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324.  doi: 10.1016/j.apnum.2012.06.007.  Google Scholar

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518.  doi: 10.1016/j.jmaa.2004.07.039.  Google Scholar

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334.  doi: 10.1016/j.apnum.2012.06.008.  Google Scholar

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806.  doi: 10.1016/j.mechmat.2011.08.016.  Google Scholar

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160.   Google Scholar

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications.  doi: 10.1023/A:1016592219341.  Google Scholar

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.  Google Scholar

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699.  doi: 10.1114/1.1574026.  Google Scholar

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290.  doi: 10.1080/00207160802624331.  Google Scholar

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097.  doi: 10.1016/j.cam.2010.07.008.  Google Scholar

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98.  doi: 10.1016/0377-0427(88)90332-9.  Google Scholar

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems.  Google Scholar

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7.  Google Scholar

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127.  doi: 10.1016/j.jcp.2015.01.025.  Google Scholar

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8.  Google Scholar

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979.  Google Scholar

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144.  doi: 10.1007/BF01932138.  Google Scholar

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79.  doi: 10.1090/S0025-5718-1989-0971403-5.  Google Scholar

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469.  doi: 10.1090/S0025-5718-1985-0804935-7.  Google Scholar

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.  Google Scholar

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833.  Google Scholar

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514.  doi: 10.1016/j.cam.2010.10.054.  Google Scholar

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230.  doi: 10.1016/j.cam.2013.04.049.  Google Scholar

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6.  doi: 10.1016/j.amc.2005.09.059.  Google Scholar

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993.  Google Scholar

Figure 1.  One-step collocation method with $m = 2$ and two-step collocation methods with $m = 2$ and with $m = 4$
Figure 2.  One-step collocation method with $m = 3$ and two-step collocation methods with $m = 3$ and with $m = 6$
Table 1.  Two-step collocation method with $m = 2$, $\eta = \left[\frac{1}{3}, \frac{2}{3}\right]$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Table 2.  Two-step collocation method with $m = 3$, $\eta = \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
[1]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[2]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[3]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[8]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[9]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[13]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[14]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[15]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[16]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[20]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (166)
  • HTML views (423)
  • Cited by (1)

[Back to Top]