September  2018, 23(7): 2709-2725. doi: 10.3934/dcdsb.2018088

Two-step collocation methods for fractional differential equations

Dipartimento di Matematica, Università di Salerno, Fisciano (SA), Italy

* Corresponding author

Received  October 2016 Revised  October 2017 Published  September 2018 Early access  March 2018

Fund Project: The work is supported by GNCS-Indam project.

We propose two-step collocation methods for the numerical solution of fractional differential equations. These methods increase the order of convergence of one-step collocation methods, with the same number of collocation points. Moreover, they are continuous methods, i.e. they furnish an approximation of the solution at each point of the time interval. We describe the derivation of two-step collocation methods and analyse convergence. Some numerical experiments confirm theoretical expectations.

Citation: Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088
References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491. 

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189.  doi: 10.3846/13926292.2012.655789.

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307.  doi: 10.3846/13926292.2013.785039.

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986.

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic).  doi: 10.1137/S0036142900376560.

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785.  doi: 10.1016/j.amc.2013.07.012.

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480.  doi: 10.1007/s11075-010-9365-1.

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324.  doi: 10.1016/j.apnum.2012.06.007.

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518.  doi: 10.1016/j.jmaa.2004.07.039.

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334.  doi: 10.1016/j.apnum.2012.06.008.

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806.  doi: 10.1016/j.mechmat.2011.08.016.

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160. 

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2.

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications.  doi: 10.1023/A:1016592219341.

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699.  doi: 10.1114/1.1574026.

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290.  doi: 10.1080/00207160802624331.

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097.  doi: 10.1016/j.cam.2010.07.008.

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98.  doi: 10.1016/0377-0427(88)90332-9.

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems.

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7.

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127.  doi: 10.1016/j.jcp.2015.01.025.

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8.

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979.

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144.  doi: 10.1007/BF01932138.

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79.  doi: 10.1090/S0025-5718-1989-0971403-5.

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469.  doi: 10.1090/S0025-5718-1985-0804935-7.

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833.

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514.  doi: 10.1016/j.cam.2010.10.054.

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230.  doi: 10.1016/j.cam.2013.04.049.

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6.  doi: 10.1016/j.amc.2005.09.059.

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993.

show all references

References:
[1]

L. Blank, Numerical treatment of differential equations of fractional order, Nonlinear World, 4 (1997), 473-491. 

[2]

J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.  doi: 10.1016/0370-1573(90)90099-N.

[3]

M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189.  doi: 10.3846/13926292.2012.655789.

[4]

M. BraśA. Cardone and R. D'Ambrosio, Implementation of explicit Nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307.  doi: 10.3846/13926292.2013.785039.

[5]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, vol. 3 of CWI Monographs, North-Holland Publishing Co., Amsterdam, 1986.

[6]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[7]

H. BrunnerA. Pedas and G. Vainikko, Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal., 39 (2001), 957-982 (electronic).  doi: 10.1137/S0036142900376560.

[8]

A. Cardone and D. Conte, Multistep collocation methods for Volterra integro-differential equations, Appl. Math. Comput., 221 (2013), 770-785.  doi: 10.1016/j.amc.2013.07.012.

[9]

A. CardoneL. G. Ixaru and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms, 55 (2010), 467-480.  doi: 10.1007/s11075-010-9365-1.

[10]

A. CardoneE. Messina and A. Vecchio, An adaptive method for Volterra-Fredholm integral equations on the half line, J. Comput. Appl. Math., 228 (2009), 538-547.  doi: 10.1016/j.cam.2008.03.036.

[11]

D. ConteR. D'Ambrosio and B. Paternoster, Two-step diagonally-implicit collocation based methods for Volterra integral equations, Appl. Numer. Math., 62 (2012), 1312-1324.  doi: 10.1016/j.apnum.2012.06.007.

[12]

V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508-518.  doi: 10.1016/j.jmaa.2004.07.039.

[13]

R. D'Ambrosio and B. Paternoster, Two-step modified collocation methods with structured coefficient matrices, Appl. Numer. Math., 62 (2012), 1325-1334.  doi: 10.1016/j.apnum.2012.06.008.

[14]

M. Di PaolaA. Pirrotta and A. Valenza, Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech. Mater., 43 (2011), 799-806.  doi: 10.1016/j.mechmat.2011.08.016.

[15]

K. Diethelm, Smoothness properties of solutions of Caputo-type fractional differential equations, Fract. Calc. Appl. Anal., 10 (2007), 151-160. 

[16]

K. Diethelm, The analysis of Fractional Differential Equations, vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010, An application-oriented exposition using differential operators of Caputo type. doi: 10.1007/978-3-642-14574-2.

[17]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22, Fractional order calculus and its applications.  doi: 10.1023/A:1016592219341.

[18]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.

[19]

V. DjordjevićJ. JarićB. FabryJ. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed. Eng., 31 (2003), 692-699.  doi: 10.1114/1.1574026.

[20]

R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, Int. J. Comput. Math., 87 (2010), 2281-2290.  doi: 10.1080/00207160802624331.

[21]

R. Garrappa and M. Popolizio, On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 1085-1097.  doi: 10.1016/j.cam.2010.07.008.

[22]

E. HairerC. Lubich and M. Schlichte, Fast numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 23 (1988), 87-98.  doi: 10.1016/0377-0427(88)90332-9.

[23]

E. Hairer, S. P. N∅rsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993, Nonstiff problems.

[24]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II, vol. 14 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2010, Stiff and differential-algebraic problems, Second revised edition, paperback. doi: 10.1007/978-3-642-05221-7.

[25]

C. Huang and Z. Zhang, Convergence of a $p$ -version/$hp$ -version method for fractional differential equations, J. Comput. Phys., 286 (2015), 118-127.  doi: 10.1016/j.jcp.2015.01.025.

[26]

L. G. Ixaru and G. Vanden Berghe, Exponential Fitting, vol. 568 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2004, With 1 CD-ROM (Windows, Macintosh and UNIX). doi: 10.1007/978-1-4020-2100-8.

[27]

R. Klages, G. Radons and I. Sokolov, Anomalous Transport: Foundations and Applications, John Wiley & Sons, 2008. doi: 10.1002/9783527622979.

[28]

I. Lie, Local error estimation for multistep collocation methods, BIT, 30 (1990), 126-144.  doi: 10.1007/BF01932138.

[29]

I. Lie and S. P. Norsett, Superconvergence for multistep collocation, Math. Comp., 52 (1989), 65-79.  doi: 10.1090/S0025-5718-1989-0971403-5.

[30]

C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comp., 45 (1985), 463-469.  doi: 10.1090/S0025-5718-1985-0804935-7.

[31]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010, An introduction to mathematical models. doi: 10.1142/9781848163300.

[32]

B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.

[33]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach Phys. Rep. , 339 (2000), 77pp. doi: 10.1016/S0370-1573(00)00070-3.

[34]

C. Necula, Option pricing in a fractional brownian motion environment, SSRN, (2008), 19pp. doi: 10.2139/ssrn.1286833.

[35]

A. Pedas and E. Tamme, On the convergence of spline collocation methods for solving fractional differential equations, J. Comput. Appl. Math., 235 (2011), 3502-3514.  doi: 10.1016/j.cam.2010.10.054.

[36]

A. Pedas and E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods, J. Comput. Appl. Math., 255 (2014), 216-230.  doi: 10.1016/j.cam.2013.04.049.

[37]

E. A. Rawashdeh, Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput., 176 (2006), 1-6.  doi: 10.1016/j.amc.2005.09.059.

[38]

P. Torvik and R. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.

[39]

G. Vainikko, Multidimensional Weakly Singular Integral Equations, vol. 1549 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1993.

Figure 1.  One-step collocation method with $m = 2$ and two-step collocation methods with $m = 2$ and with $m = 4$
Figure 2.  One-step collocation method with $m = 3$ and two-step collocation methods with $m = 3$ and with $m = 6$
Table 1.  Two-step collocation method with $m = 2$, $\eta = \left[\frac{1}{3}, \frac{2}{3}\right]$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Problem 1Problem 2Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.02$ $4.49e-03$ $0.31$
16 $1.20e-03$ $3.78$ $3.08e-04$ $3.87$ $0.10$ $1.62$
32 $8.02e-05$ $3.90$ $1.93e-05$ $3.99$ $0.01$ $2.78$
64 $5.19e-06$ $3.95$ $1.20e-06$ $4.01$$1.26e-03$ $3.52$
128 $3.33e-07$ $3.96$ $7.42e-08$ $4.01$$8.32e-05$ $3.92$
256 $2.12e-08$ $3.97$ $4.62e-09$ $4.01$$4.82e-06$ $4.11$
512 $1.35e-09$$3.98$ $2.88e-10$ $4.00$$2.68e-07$ $4.17$
Table 2.  Two-step collocation method with $m = 3$, $\eta = \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
Problem 1 Problem 2 Problem 3
N $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$ $e_{N}$ $p_{\mbox{eff}}$
8 $0.13$ $1.60e-02$ $0.11$
16 $1.44e-03$ $6.54$ $1.73e-04$ $6.53$ $1.93e-02$ $ 2.56$
32 $1.78e-05$ $6.34$ $ 2.12e-06$ $6.34$ $1.06e-03$ $ 4.18$
64 $2.40e-07$ $6.21$ $2.91e-08$ $6.19$$2.78e-05$ $5.26$
128 $3.43e-09$ $6.13$ $4.25e-10$ $6.10$$5.00e-07$ $5.80$
256 $5.09e-11$ $6.08$ $6.43e-12$ $6.05$$ 7.53e-09$ $6.05$
512 $7.66e-13$ $6.05$ $9.90e-14$ $ 6.02$$1.05e-10$ $6.17$
[1]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[2]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[3]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[4]

Yuling Guo, Zhongqing Wang. A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022052

[5]

Imtiaz Ahmad, Siraj-ul-Islam, Mehnaz, Sakhi Zaman. Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2641-2654. doi: 10.3934/dcdss.2020223

[6]

Philippe Angot, Pierre Fabrie. Convergence results for the vector penalty-projection and two-step artificial compressibility methods. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1383-1405. doi: 10.3934/dcdsb.2012.17.1383

[7]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[8]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 339-357. doi: 10.3934/dcdss.2021025

[9]

Lianshuan Shi, Enmin Feng, Huanchun Sun, Zhaosheng Feng. A two-step algorithm for layout optimization of structures with discrete variables. Journal of Industrial and Management Optimization, 2007, 3 (3) : 543-552. doi: 10.3934/jimo.2007.3.543

[10]

Tingting Wu, Yufei Yang, Huichao Jing. Two-step methods for image zooming using duality strategies. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 209-225. doi: 10.3934/naco.2014.4.209

[11]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[12]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[13]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[14]

Zhongying Chen, Bin Wu, Yuesheng Xu. Fast numerical collocation solutions of integral equations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 643-666. doi: 10.3934/cpaa.2007.6.643

[15]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[16]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[17]

Francisco J. Ibarrola, Ruben D. Spies. A two-step mixed inpainting method with curvature-based anisotropy and spatial adaptivity. Inverse Problems and Imaging, 2017, 11 (2) : 247-262. doi: 10.3934/ipi.2017012

[18]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[19]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[20]

Ferdinando Auricchio, Lourenco Beirão da Veiga, Josef Kiendl, Carlo Lovadina, Alessandro Reali. Isogeometric collocation mixed methods for rods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 33-42. doi: 10.3934/dcdss.2016.9.33

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (449)
  • HTML views (453)
  • Cited by (3)

[Back to Top]