[1]
|
M. G. Armentano and R. G. Duran, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal., 17 (2004), 93-101.
|
[2]
|
I. Babuska and J. Osborn,
Handbook of Numerical Analysis, Vol II, Part1, Elsevier Science Publishers, North-Holland, 1991.
|
[3]
|
I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), 275-297.
doi: 10.1090/S0025-5718-1989-0962210-8.
|
[4]
|
C. Carstensen, D. Gallistl and M. Schedensack, Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comput., 84 (2014), 1061-1087.
|
[5]
|
C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comput., 83 (2014), 2605-2629.
doi: 10.1090/S0025-5718-2014-02833-0.
|
[6]
|
L. Chen, J. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.
doi: 10.1007/s10915-013-9771-3.
|
[7]
|
D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.
doi: 10.1137/120880173.
|
[8]
|
J. Hu, Y. Huang and Q. Lin, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67 (2016), 1181-1197.
doi: 10.1007/s10915-015-0126-0.
|
[9]
|
_____, Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.
doi: 10.1007/s10915-014-9821-5.
|
[10]
|
J. Hu, Y. Huang and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), 273-302.
doi: 10.1007/s00211-014-0688-z.
|
[11]
|
_____, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58 (2014), 574-591.
doi: 10.1007/s10915-013-9744-6.
|
[12]
|
J. R. Kuttler, Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11 (1974), 732-740.
doi: 10.1137/0711059.
|
[13]
|
M. G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), 608-625.
doi: 10.1137/S0036142997320164.
|
[14]
|
Q. Lin, H. Huang and Z. Li, New expansions of numerical eigenvalues by nonconforming elements, Math. Comput., 77 (2008), 2061-2084.
doi: 10.1090/S0025-5718-08-02098-X.
|
[15]
|
Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comput., 83 (2014), 1-13.
|
[16]
|
X. Liu and S. I. Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., 51 (2013), 1634-1654.
doi: 10.1137/120878446.
|
[17]
|
F. Luo, Q. Lin and H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 55 (2012), 1069-1082.
doi: 10.1007/s11425-012-4382-2.
|
[18]
|
L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.
doi: 10.1016/j.jcp.2013.04.042.
|
[19]
|
L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003-1029.
doi: 10.1002/num.21855.
|
[20]
|
L. Mu, J. Wang, X. Ye and S. Zhang, A $C^0$
-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.
doi: 10.1007/s10915-013-9770-4.
|
[21]
|
_____, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.
doi: 10.1007/s10915-014-9964-4.
|
[22]
|
L. Mu, X. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275 (2015), 79-90.
doi: 10.1016/j.cam.2014.08.006.
|
[23]
|
J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003.
|
[24]
|
_____, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4.
|
[25]
|
R. Wang, X. Wang, Q. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.
doi: 10.1016/j.cam.2016.01.025.
|
[26]
|
X. Wang, Q. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.
doi: 10.1016/j.cam.2016.04.031.
|
[27]
|
H. Xie, Q. Zhai and R. Zhang, The weak Galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015).
|
[28]
|
Q. Zhai, R. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.
doi: 10.1007/s11425-015-5030-4.
|
[29]
|
R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.
doi: 10.1007/s10915-014-9945-7.
|