- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Two-grid finite element method for the stabilization of mixed Stokes-Darcy model
Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes
School of Mathematics, Jilin University, Changchun, China |
In this paper, we investigate the weak Galerkin method for the Laplacian eigenvalue problem. We use the weak Galerkin method to obtain lower bounds of Laplacian eigenvalues, and apply a postprocessing technique to get upper bounds. Thus, we can verify the accurate intervals which the exact eigenvalues lie in. This postprocessing technique is efficient and does not need to solve any auxiliary problem. Both theoretical analysis and numerical experiments are presented in this paper.
References:
[1] |
M. G. Armentano and R. G. Duran,
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal., 17 (2004), 93-101.
|
[2] |
I. Babuska and J. Osborn,
Handbook of Numerical Analysis, Vol II, Part1, Elsevier Science Publishers, North-Holland, 1991. |
[3] |
I. Babuska and J. E. Osborn,
Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), 275-297.
doi: 10.1090/S0025-5718-1989-0962210-8. |
[4] |
C. Carstensen, D. Gallistl and M. Schedensack,
Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comput., 84 (2014), 1061-1087.
|
[5] |
C. Carstensen and J. Gedicke,
Guaranteed lower bounds for eigenvalues, Math. Comput., 83 (2014), 2605-2629.
doi: 10.1090/S0025-5718-2014-02833-0. |
[6] |
L. Chen, J. Wang and X. Ye,
A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.
doi: 10.1007/s10915-013-9771-3. |
[7] |
D. S. Grebenkov and B.-T. Nguyen,
Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.
doi: 10.1137/120880173. |
[8] |
J. Hu, Y. Huang and Q. Lin,
Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67 (2016), 1181-1197.
doi: 10.1007/s10915-015-0126-0. |
[9] |
_____,
Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.
doi: 10.1007/s10915-014-9821-5. |
[10] |
J. Hu, Y. Huang and Q. Shen,
Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), 273-302.
doi: 10.1007/s00211-014-0688-z. |
[11] |
_____,
The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58 (2014), 574-591.
doi: 10.1007/s10915-013-9744-6. |
[12] |
J. R. Kuttler,
Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11 (1974), 732-740.
doi: 10.1137/0711059. |
[13] |
M. G. Larson,
A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), 608-625.
doi: 10.1137/S0036142997320164. |
[14] |
Q. Lin, H. Huang and Z. Li,
New expansions of numerical eigenvalues by nonconforming elements, Math. Comput., 77 (2008), 2061-2084.
doi: 10.1090/S0025-5718-08-02098-X. |
[15] |
Q. Lin, H. Xie and J. Xu,
Lower bounds of the discretization error for piecewise polynomials, Math. Comput., 83 (2014), 1-13.
|
[16] |
X. Liu and S. I. Oishi,
Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., 51 (2013), 1634-1654.
doi: 10.1137/120878446. |
[17] |
F. Luo, Q. Lin and H. Xie,
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 55 (2012), 1069-1082.
doi: 10.1007/s11425-012-4382-2. |
[18] |
L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao,
Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.
doi: 10.1016/j.jcp.2013.04.042. |
[19] |
L. Mu, J. Wang and X. Ye,
Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003-1029.
doi: 10.1002/num.21855. |
[20] |
L. Mu, J. Wang, X. Ye and S. Zhang,
A $C^0$
-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.
doi: 10.1007/s10915-013-9770-4. |
[21] |
_____,
A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.
doi: 10.1007/s10915-014-9964-4. |
[22] |
L. Mu, X. Wang and X. Ye,
A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275 (2015), 79-90.
doi: 10.1016/j.cam.2014.08.006. |
[23] |
J. Wang and X. Ye,
A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003. |
[24] |
_____,
A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4. |
[25] |
R. Wang, X. Wang, Q. Zhai and R. Zhang,
A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.
doi: 10.1016/j.cam.2016.01.025. |
[26] |
X. Wang, Q. Zhai and R. Zhang,
The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.
doi: 10.1016/j.cam.2016.04.031. |
[27] |
H. Xie, Q. Zhai and R. Zhang, The weak Galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015). |
[28] |
Q. Zhai, R. Zhang and X. Wang,
A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.
doi: 10.1007/s11425-015-5030-4. |
[29] |
R. Zhang and Q. Zhai,
A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.
doi: 10.1007/s10915-014-9945-7. |
show all references
References:
[1] |
M. G. Armentano and R. G. Duran,
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal., 17 (2004), 93-101.
|
[2] |
I. Babuska and J. Osborn,
Handbook of Numerical Analysis, Vol II, Part1, Elsevier Science Publishers, North-Holland, 1991. |
[3] |
I. Babuska and J. E. Osborn,
Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), 275-297.
doi: 10.1090/S0025-5718-1989-0962210-8. |
[4] |
C. Carstensen, D. Gallistl and M. Schedensack,
Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comput., 84 (2014), 1061-1087.
|
[5] |
C. Carstensen and J. Gedicke,
Guaranteed lower bounds for eigenvalues, Math. Comput., 83 (2014), 2605-2629.
doi: 10.1090/S0025-5718-2014-02833-0. |
[6] |
L. Chen, J. Wang and X. Ye,
A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.
doi: 10.1007/s10915-013-9771-3. |
[7] |
D. S. Grebenkov and B.-T. Nguyen,
Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.
doi: 10.1137/120880173. |
[8] |
J. Hu, Y. Huang and Q. Lin,
Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67 (2016), 1181-1197.
doi: 10.1007/s10915-015-0126-0. |
[9] |
_____,
Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.
doi: 10.1007/s10915-014-9821-5. |
[10] |
J. Hu, Y. Huang and Q. Shen,
Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), 273-302.
doi: 10.1007/s00211-014-0688-z. |
[11] |
_____,
The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58 (2014), 574-591.
doi: 10.1007/s10915-013-9744-6. |
[12] |
J. R. Kuttler,
Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11 (1974), 732-740.
doi: 10.1137/0711059. |
[13] |
M. G. Larson,
A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), 608-625.
doi: 10.1137/S0036142997320164. |
[14] |
Q. Lin, H. Huang and Z. Li,
New expansions of numerical eigenvalues by nonconforming elements, Math. Comput., 77 (2008), 2061-2084.
doi: 10.1090/S0025-5718-08-02098-X. |
[15] |
Q. Lin, H. Xie and J. Xu,
Lower bounds of the discretization error for piecewise polynomials, Math. Comput., 83 (2014), 1-13.
|
[16] |
X. Liu and S. I. Oishi,
Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., 51 (2013), 1634-1654.
doi: 10.1137/120878446. |
[17] |
F. Luo, Q. Lin and H. Xie,
Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 55 (2012), 1069-1082.
doi: 10.1007/s11425-012-4382-2. |
[18] |
L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao,
Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.
doi: 10.1016/j.jcp.2013.04.042. |
[19] |
L. Mu, J. Wang and X. Ye,
Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003-1029.
doi: 10.1002/num.21855. |
[20] |
L. Mu, J. Wang, X. Ye and S. Zhang,
A $C^0$
-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.
doi: 10.1007/s10915-013-9770-4. |
[21] |
_____,
A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.
doi: 10.1007/s10915-014-9964-4. |
[22] |
L. Mu, X. Wang and X. Ye,
A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275 (2015), 79-90.
doi: 10.1016/j.cam.2014.08.006. |
[23] |
J. Wang and X. Ye,
A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003. |
[24] |
_____,
A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4. |
[25] |
R. Wang, X. Wang, Q. Zhai and R. Zhang,
A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.
doi: 10.1016/j.cam.2016.01.025. |
[26] |
X. Wang, Q. Zhai and R. Zhang,
The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.
doi: 10.1016/j.cam.2016.04.031. |
[27] |
H. Xie, Q. Zhai and R. Zhang, The weak Galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015). |
[28] |
Q. Zhai, R. Zhang and X. Wang,
A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.
doi: 10.1007/s11425-015-5030-4. |
[29] |
R. Zhang and Q. Zhai,
A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.
doi: 10.1007/s10915-014-9945-7. |
1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | | |
| 1.540722 | 1.851769 | 1.958022 | 1.988587 | 1.996933 | 1.999178 | 2 |
rate | 1.6315 | 1.8202 | 1.8790 | 1.8955 | 1.9001 | ||
| 2.223673 | 2.068547 | 2.018267 | 2.004693 | 2.001189 | 2.000299 | 2 |
rate | 1.7062 | 1.9079 | 1.9606 | 1.9809 | 1.9905 | ||
| 2.821831 | 4.135190 | 4.734921 | 4.926297 | 4.980094 | 4.994667 | 5 |
rate | 1.3327 | 1.7060 | 1.8466 | 1.8885 | 1.9001 | ||
| 6.588245 | 5.484282 | 5.125546 | 5.031824 | 5.008012 | 5.002010 | 5 |
rate | 1.7135 | 1.9476 | 1.9800 | 1.9899 | 1.9947 | ||
| 2.836209 | 4.142792 | 4.737301 | 4.926955 | 4.980270 | 4.994713 | 5 |
rate | 1.3358 | 1.7062 | 1.8465 | 1.8884 | 1.8999 | ||
| 5.909723 | 5.304362 | 5.079723 | 5.020284 | 5.005121 | 5.001287 | 5 |
rate | 1.5796 | 1.9327 | 1.9747 | 1.9859 | 1.9921 | ||
| 3.681649 | 6.061917 | 7.368179 | 7.820465 | 7.951145 | 7.986866 | 8 |
rate | 1.1558 | 1.6170 | 1.8152 | 1.8777 | 1.8952 | ||
| 11.615328 | 9.158161 | 8.297756 | 8.075492 | 8.019049 | 8.004789 | 8 |
rate | 1.6423 | 1.9596 | 1.9797 | 1.9866 | 1.9920 |
1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | | |
| 1.540722 | 1.851769 | 1.958022 | 1.988587 | 1.996933 | 1.999178 | 2 |
rate | 1.6315 | 1.8202 | 1.8790 | 1.8955 | 1.9001 | ||
| 2.223673 | 2.068547 | 2.018267 | 2.004693 | 2.001189 | 2.000299 | 2 |
rate | 1.7062 | 1.9079 | 1.9606 | 1.9809 | 1.9905 | ||
| 2.821831 | 4.135190 | 4.734921 | 4.926297 | 4.980094 | 4.994667 | 5 |
rate | 1.3327 | 1.7060 | 1.8466 | 1.8885 | 1.9001 | ||
| 6.588245 | 5.484282 | 5.125546 | 5.031824 | 5.008012 | 5.002010 | 5 |
rate | 1.7135 | 1.9476 | 1.9800 | 1.9899 | 1.9947 | ||
| 2.836209 | 4.142792 | 4.737301 | 4.926955 | 4.980270 | 4.994713 | 5 |
rate | 1.3358 | 1.7062 | 1.8465 | 1.8884 | 1.8999 | ||
| 5.909723 | 5.304362 | 5.079723 | 5.020284 | 5.005121 | 5.001287 | 5 |
rate | 1.5796 | 1.9327 | 1.9747 | 1.9859 | 1.9921 | ||
| 3.681649 | 6.061917 | 7.368179 | 7.820465 | 7.951145 | 7.986866 | 8 |
rate | 1.1558 | 1.6170 | 1.8152 | 1.8777 | 1.8952 | ||
| 11.615328 | 9.158161 | 8.297756 | 8.075492 | 8.019049 | 8.004789 | 8 |
rate | 1.6423 | 1.9596 | 1.9797 | 1.9866 | 1.9920 |
1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | | |
| 1.977623 | 1.998594 | 1.999907 | 1.999994 | 1.9999995 | 1.99999997 | 2 |
rate | 3.9922 | 3.9260 | 3.9060 | 3.9006 | 3.8999 | ||
| 2.047797 | 2.001416 | 2.000060 | 2.000003 | 2.0000002 | 2.00000001 | 2 |
rate | 5.0769 | 4.5640 | 4.3668 | 4.2495 | 4.1640 | ||
| 4.562639 | 4.973361 | 4.998298 | 4.999888 | 4.999992 | 4.9999994 | 5 |
rate | 4.0372 | 3.9683 | 3.9193 | 3.9049 | 3.9011 | ||
| 5.965094 | 5.025528 | 5.000995 | 5.000048 | 5.000003 | 5.0000001 | 5 |
rate | 5.2405 | 4.6807 | 4.3769 | 4.2375 | 4.1526 | ||
| 4.656697 | 4.980159 | 4.998739 | 4.999917 | 4.999994 | 4.9999996 | 5 |
rate | 4.1130 | 3.9757 | 3.9208 | 3.9056 | 3.9016 | ||
| 6.352000 | 5.023431 | 5.000784 | 5.000034 | 5.000002 | 5.00000008 | 5 |
rate | 5.8505 | 4.9017 | 4.5228 | 4.3518 | 4.2405 | ||
| 6.423791 | 7.902345 | 7.993940 | 7.999603 | 7.999974 | 7.999998 | 8 |
rate | 4.0126 | 4.0103 | 3.9302 | 3.9073 | 3.9011 | ||
| 14.174453 | 8.132512 | 8.004208 | 8.000190 | 8.000010 | 8.000001 | 8 |
rate | 5.5421 | 4.9768 | 4.4660 | 4.2751 | 4.1726 |
1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | | |
| 1.977623 | 1.998594 | 1.999907 | 1.999994 | 1.9999995 | 1.99999997 | 2 |
rate | 3.9922 | 3.9260 | 3.9060 | 3.9006 | 3.8999 | ||
| 2.047797 | 2.001416 | 2.000060 | 2.000003 | 2.0000002 | 2.00000001 | 2 |
rate | 5.0769 | 4.5640 | 4.3668 | 4.2495 | 4.1640 | ||
| 4.562639 | 4.973361 | 4.998298 | 4.999888 | 4.999992 | 4.9999994 | 5 |
rate | 4.0372 | 3.9683 | 3.9193 | 3.9049 | 3.9011 | ||
| 5.965094 | 5.025528 | 5.000995 | 5.000048 | 5.000003 | 5.0000001 | 5 |
rate | 5.2405 | 4.6807 | 4.3769 | 4.2375 | 4.1526 | ||
| 4.656697 | 4.980159 | 4.998739 | 4.999917 | 4.999994 | 4.9999996 | 5 |
rate | 4.1130 | 3.9757 | 3.9208 | 3.9056 | 3.9016 | ||
| 6.352000 | 5.023431 | 5.000784 | 5.000034 | 5.000002 | 5.00000008 | 5 |
rate | 5.8505 | 4.9017 | 4.5228 | 4.3518 | 4.2405 | ||
| 6.423791 | 7.902345 | 7.993940 | 7.999603 | 7.999974 | 7.999998 | 8 |
rate | 4.0126 | 4.0103 | 3.9302 | 3.9073 | 3.9011 | ||
| 14.174453 | 8.132512 | 8.004208 | 8.000190 | 8.000010 | 8.000001 | 8 |
rate | 5.5421 | 4.9768 | 4.4660 | 4.2751 | 4.1726 |
| 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 |
| 5.907113 | 8.154417 | 9.155869 | 9.490441 | 9.593250 | 9.624793 |
| 11.656280 | 10.498323 | 9.908178 | 9.722418 | 9.666084 | 9.648513 |
| 8.201188 | 12.308821 | 14.293314 | 14.943779 | 15.128548 | 15.178811 |
| 17.974323 | 16.396266 | 15.533543 | 15.284908 | 15.219633 | 15.202913 |
| 9.444494 | 15.205676 | 18.276194 | 19.324905 | 19.626571 | 19.708934 |
| 26.262083 | 22.353621 | 20.453712 | 19.923453 | 19.785982 | 19.750997 |
| 11.124165 | 20.258292 | 26.287193 | 28.580159 | 29.263739 | 29.452134 |
| 44.270371 | 34.588644 | 30.891333 | 29.870772 | 29.609766 | 29.543696 |
| 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 |
| 5.907113 | 8.154417 | 9.155869 | 9.490441 | 9.593250 | 9.624793 |
| 11.656280 | 10.498323 | 9.908178 | 9.722418 | 9.666084 | 9.648513 |
| 8.201188 | 12.308821 | 14.293314 | 14.943779 | 15.128548 | 15.178811 |
| 17.974323 | 16.396266 | 15.533543 | 15.284908 | 15.219633 | 15.202913 |
| 9.444494 | 15.205676 | 18.276194 | 19.324905 | 19.626571 | 19.708934 |
| 26.262083 | 22.353621 | 20.453712 | 19.923453 | 19.785982 | 19.750997 |
| 11.124165 | 20.258292 | 26.287193 | 28.580159 | 29.263739 | 29.452134 |
| 44.270371 | 34.588644 | 30.891333 | 29.870772 | 29.609766 | 29.543696 |
| 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 |
| 9.076541 | 9.556156 | 9.615812 | 9.630832 | 9.636223 | 9.638331 |
| 12.345634 | 10.075057 | 9.790403 | 9.698357 | 9.662955 | 9.648961 |
| 13.584241 | 15.097385 | 15.190417 | 15.196722 | 15.197204 | 15.197247 |
| 22.666873 | 15.346520 | 15.202918 | 15.197605 | 15.197285 | 15.197256 |
| 16.280287 | 19.517968 | 19.725325 | 19.738296 | 19.739148 | 19.739205 |
| 35.044030 | 20.076880 | 19.750149 | 19.739700 | 19.739234 | 19.739210 |
| 19.966348 | 28.777512 | 29.476177 | 29.518504 | 29.521278 | 29.521467 |
| 74.081123 | 30.746432 | 29.554518 | 29.522929 | 29.521560 | 29.521486 |
| 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 |
| 9.076541 | 9.556156 | 9.615812 | 9.630832 | 9.636223 | 9.638331 |
| 12.345634 | 10.075057 | 9.790403 | 9.698357 | 9.662955 | 9.648961 |
| 13.584241 | 15.097385 | 15.190417 | 15.196722 | 15.197204 | 15.197247 |
| 22.666873 | 15.346520 | 15.202918 | 15.197605 | 15.197285 | 15.197256 |
| 16.280287 | 19.517968 | 19.725325 | 19.738296 | 19.739148 | 19.739205 |
| 35.044030 | 20.076880 | 19.750149 | 19.739700 | 19.739234 | 19.739210 |
| 19.966348 | 28.777512 | 29.476177 | 29.518504 | 29.521278 | 29.521467 |
| 74.081123 | 30.746432 | 29.554518 | 29.522929 | 29.521560 | 29.521486 |
[1] |
Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158 |
[2] |
Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276 |
[3] |
Mohammed Mesk, Ali Moussaoui. On an upper bound for the spreading speed. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3897-3912. doi: 10.3934/dcdsb.2021210 |
[4] |
Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165 |
[5] |
Yuntao Zang. An upper bound of the measure-theoretical entropy. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022052 |
[6] |
Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35 |
[7] |
Geng Chen, Ronghua Pan, Shengguo Zhu. A polygonal scheme and the lower bound on density for the isentropic gas dynamics. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4259-4277. doi: 10.3934/dcds.2019172 |
[8] |
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55 |
[9] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[10] |
Ling-Bing He, Jie Ji, Ling-Xuan Shao. Lower bound for the Boltzmann equation whose regularity grows tempered with time. Kinetic and Related Models, 2021, 14 (4) : 705-724. doi: 10.3934/krm.2021020 |
[11] |
Luís Simão Ferreira. A lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles. Kinetic and Related Models, 2022, 15 (1) : 91-117. doi: 10.3934/krm.2021045 |
[12] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[13] |
Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95 |
[14] |
Yael Ben-Haim, Simon Litsyn. A new upper bound on the rate of non-binary codes. Advances in Mathematics of Communications, 2007, 1 (1) : 83-92. doi: 10.3934/amc.2007.1.83 |
[15] |
S. E. Kuznetsov. An upper bound for positive solutions of the equation \Delta u=u^\alpha. Electronic Research Announcements, 2004, 10: 103-112. |
[16] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[17] |
Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97 |
[18] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure and Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[19] |
Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic and Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281 |
[20] |
Claude Carlet, Brahim Merabet. Asymptotic lower bound on the algebraic immunity of random balanced multi-output Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 197-217. doi: 10.3934/amc.2013.7.197 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]