January  2019, 24(1): 403-413. doi: 10.3934/dcdsb.2018091

Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes

School of Mathematics, Jilin University, Changchun, China

Received  November 2016 Revised  October 2017 Published  March 2018

Fund Project: The research of this author was supported in part by China Natural National Science Foundation (U1530116,91630201,11471141), and by the Program for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, P.R. China.

In this paper, we investigate the weak Galerkin method for the Laplacian eigenvalue problem. We use the weak Galerkin method to obtain lower bounds of Laplacian eigenvalues, and apply a postprocessing technique to get upper bounds. Thus, we can verify the accurate intervals which the exact eigenvalues lie in. This postprocessing technique is efficient and does not need to solve any auxiliary problem. Both theoretical analysis and numerical experiments are presented in this paper.

Citation: Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091
References:
[1]

M. G. Armentano and R. G. Duran, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal., 17 (2004), 93-101.   Google Scholar

[2]

I. Babuska and J. Osborn, Handbook of Numerical Analysis, Vol II, Part1, Elsevier Science Publishers, North-Holland, 1991.  Google Scholar

[3]

I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), 275-297.  doi: 10.1090/S0025-5718-1989-0962210-8.  Google Scholar

[4]

C. CarstensenD. Gallistl and M. Schedensack, Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comput., 84 (2014), 1061-1087.   Google Scholar

[5]

C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comput., 83 (2014), 2605-2629.  doi: 10.1090/S0025-5718-2014-02833-0.  Google Scholar

[6]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[7]

D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.  doi: 10.1137/120880173.  Google Scholar

[8]

J. HuY. Huang and Q. Lin, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67 (2016), 1181-1197.  doi: 10.1007/s10915-015-0126-0.  Google Scholar

[9]

_____, Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.  doi: 10.1007/s10915-014-9821-5.  Google Scholar

[10]

J. HuY. Huang and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), 273-302.  doi: 10.1007/s00211-014-0688-z.  Google Scholar

[11]

_____, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58 (2014), 574-591.  doi: 10.1007/s10915-013-9744-6.  Google Scholar

[12]

J. R. Kuttler, Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11 (1974), 732-740.  doi: 10.1137/0711059.  Google Scholar

[13]

M. G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), 608-625.  doi: 10.1137/S0036142997320164.  Google Scholar

[14]

Q. LinH. Huang and Z. Li, New expansions of numerical eigenvalues by nonconforming elements, Math. Comput., 77 (2008), 2061-2084.  doi: 10.1090/S0025-5718-08-02098-X.  Google Scholar

[15]

Q. LinH. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comput., 83 (2014), 1-13.   Google Scholar

[16]

X. Liu and S. I. Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., 51 (2013), 1634-1654.  doi: 10.1137/120878446.  Google Scholar

[17]

F. LuoQ. Lin and H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 55 (2012), 1069-1082.  doi: 10.1007/s11425-012-4382-2.  Google Scholar

[18]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[19]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[20]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$ -weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[21]

_____, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[22]

L. MuX. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275 (2015), 79-90.  doi: 10.1016/j.cam.2014.08.006.  Google Scholar

[23]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[24]

_____, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[25]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[26]

X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.  Google Scholar

[27]

H. Xie, Q. Zhai and R. Zhang, The weak Galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015).  Google Scholar

[28]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[29]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

show all references

References:
[1]

M. G. Armentano and R. G. Duran, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, ETNA, Electron. Trans. Numer. Anal., 17 (2004), 93-101.   Google Scholar

[2]

I. Babuska and J. Osborn, Handbook of Numerical Analysis, Vol II, Part1, Elsevier Science Publishers, North-Holland, 1991.  Google Scholar

[3]

I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comput., 52 (1989), 275-297.  doi: 10.1090/S0025-5718-1989-0962210-8.  Google Scholar

[4]

C. CarstensenD. Gallistl and M. Schedensack, Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comput., 84 (2014), 1061-1087.   Google Scholar

[5]

C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comput., 83 (2014), 2605-2629.  doi: 10.1090/S0025-5718-2014-02833-0.  Google Scholar

[6]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[7]

D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55 (2013), 601-667.  doi: 10.1137/120880173.  Google Scholar

[8]

J. HuY. Huang and Q. Lin, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67 (2016), 1181-1197.  doi: 10.1007/s10915-015-0126-0.  Google Scholar

[9]

_____, Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.  doi: 10.1007/s10915-014-9821-5.  Google Scholar

[10]

J. HuY. Huang and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131 (2015), 273-302.  doi: 10.1007/s00211-014-0688-z.  Google Scholar

[11]

_____, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58 (2014), 574-591.  doi: 10.1007/s10915-013-9744-6.  Google Scholar

[12]

J. R. Kuttler, Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11 (1974), 732-740.  doi: 10.1137/0711059.  Google Scholar

[13]

M. G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), 608-625.  doi: 10.1137/S0036142997320164.  Google Scholar

[14]

Q. LinH. Huang and Z. Li, New expansions of numerical eigenvalues by nonconforming elements, Math. Comput., 77 (2008), 2061-2084.  doi: 10.1090/S0025-5718-08-02098-X.  Google Scholar

[15]

Q. LinH. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comput., 83 (2014), 1-13.   Google Scholar

[16]

X. Liu and S. I. Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal., 51 (2013), 1634-1654.  doi: 10.1137/120878446.  Google Scholar

[17]

F. LuoQ. Lin and H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 55 (2012), 1069-1082.  doi: 10.1007/s11425-012-4382-2.  Google Scholar

[18]

L. MuJ. WangG. WeiX. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250 (2013), 106-125.  doi: 10.1016/j.jcp.2013.04.042.  Google Scholar

[19]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[20]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$ -weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[21]

_____, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[22]

L. MuX. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275 (2015), 79-90.  doi: 10.1016/j.cam.2014.08.006.  Google Scholar

[23]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[24]

_____, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[25]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[26]

X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.  Google Scholar

[27]

H. Xie, Q. Zhai and R. Zhang, The weak Galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015).  Google Scholar

[28]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[29]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

Table 1.  Numerical results for the eigenvalues with $k = 1$
$h$1/41/81/161/321/641/128 $\lambda$
$ \lambda_{1, h}$1.5407221.8517691.9580221.9885871.9969331.9991782
rate1.63151.82021.87901.89551.9001
$\tilde \lambda_{1, h}$2.2236732.0685472.0182672.0046932.0011892.0002992
rate1.70621.90791.96061.98091.9905
$ \lambda_{2, h}$2.8218314.1351904.7349214.9262974.9800944.9946675
rate1.33271.70601.84661.88851.9001
$\tilde \lambda_{2, h}$6.5882455.4842825.1255465.0318245.0080125.0020105
rate1.71351.94761.98001.98991.9947
$ \lambda_{3, h}$2.8362094.1427924.7373014.9269554.9802704.9947135
rate1.33581.70621.84651.88841.8999
$\tilde \lambda_{3, h}$5.9097235.3043625.0797235.0202845.0051215.0012875
rate1.57961.93271.97471.98591.9921
$ \lambda_{4, h}$3.6816496.0619177.3681797.8204657.9511457.9868668
rate1.15581.61701.81521.87771.8952
$\tilde \lambda_{4, h}$11.6153289.1581618.2977568.0754928.0190498.0047898
rate1.64231.95961.97971.98661.9920
$h$1/41/81/161/321/641/128 $\lambda$
$ \lambda_{1, h}$1.5407221.8517691.9580221.9885871.9969331.9991782
rate1.63151.82021.87901.89551.9001
$\tilde \lambda_{1, h}$2.2236732.0685472.0182672.0046932.0011892.0002992
rate1.70621.90791.96061.98091.9905
$ \lambda_{2, h}$2.8218314.1351904.7349214.9262974.9800944.9946675
rate1.33271.70601.84661.88851.9001
$\tilde \lambda_{2, h}$6.5882455.4842825.1255465.0318245.0080125.0020105
rate1.71351.94761.98001.98991.9947
$ \lambda_{3, h}$2.8362094.1427924.7373014.9269554.9802704.9947135
rate1.33581.70621.84651.88841.8999
$\tilde \lambda_{3, h}$5.9097235.3043625.0797235.0202845.0051215.0012875
rate1.57961.93271.97471.98591.9921
$ \lambda_{4, h}$3.6816496.0619177.3681797.8204657.9511457.9868668
rate1.15581.61701.81521.87771.8952
$\tilde \lambda_{4, h}$11.6153289.1581618.2977568.0754928.0190498.0047898
rate1.64231.95961.97971.98661.9920
Table 2.  Numerical results for the eigenvalues with $k = 2$
$h$1/41/81/161/321/641/128 $\lambda$
$ \lambda_{1, h}$1.9776231.9985941.9999071.9999941.99999951.999999972
rate3.99223.92603.90603.90063.8999
$\tilde \lambda_{1, h}$2.0477972.0014162.0000602.0000032.00000022.000000012
rate5.07694.56404.36684.24954.1640
$ \lambda_{2, h}$4.5626394.9733614.9982984.9998884.9999924.99999945
rate4.03723.96833.91933.90493.9011
$\tilde \lambda_{2, h}$5.9650945.0255285.0009955.0000485.0000035.00000015
rate5.24054.68074.37694.23754.1526
$ \lambda_{3, h}$4.6566974.9801594.9987394.9999174.9999944.99999965
rate4.11303.97573.92083.90563.9016
$\tilde \lambda_{3, h}$6.3520005.0234315.0007845.0000345.0000025.000000085
rate5.85054.90174.52284.35184.2405
$ \lambda_{4, h}$6.4237917.9023457.9939407.9996037.9999747.9999988
rate4.01264.01033.93023.90733.9011
$\tilde \lambda_{4, h}$14.1744538.1325128.0042088.0001908.0000108.0000018
rate5.54214.97684.46604.27514.1726
$h$1/41/81/161/321/641/128 $\lambda$
$ \lambda_{1, h}$1.9776231.9985941.9999071.9999941.99999951.999999972
rate3.99223.92603.90603.90063.8999
$\tilde \lambda_{1, h}$2.0477972.0014162.0000602.0000032.00000022.000000012
rate5.07694.56404.36684.24954.1640
$ \lambda_{2, h}$4.5626394.9733614.9982984.9998884.9999924.99999945
rate4.03723.96833.91933.90493.9011
$\tilde \lambda_{2, h}$5.9650945.0255285.0009955.0000485.0000035.00000015
rate5.24054.68074.37694.23754.1526
$ \lambda_{3, h}$4.6566974.9801594.9987394.9999174.9999944.99999965
rate4.11303.97573.92083.90563.9016
$\tilde \lambda_{3, h}$6.3520005.0234315.0007845.0000345.0000025.000000085
rate5.85054.90174.52284.35184.2405
$ \lambda_{4, h}$6.4237917.9023457.9939407.9996037.9999747.9999988
rate4.01264.01033.93023.90733.9011
$\tilde \lambda_{4, h}$14.1744538.1325128.0042088.0001908.0000108.0000018
rate5.54214.97684.46604.27514.1726
Table 3.  Numerical results for the Lshape domain with $k = 1$
$h$1/41/81/161/321/641/128
$ \lambda_{1, h}$5.9071138.1544179.1558699.4904419.5932509.624793
$\tilde \lambda_{1, h}$11.65628010.4983239.9081789.7224189.6660849.648513
$ \lambda_{2, h}$8.20118812.30882114.29331414.94377915.12854815.178811
$\tilde \lambda_{2, h}$17.97432316.39626615.53354315.28490815.21963315.202913
$ \lambda_{3, h}$9.44449415.20567618.27619419.32490519.62657119.708934
$\tilde \lambda_{3, h}$26.26208322.35362120.45371219.92345319.78598219.750997
$ \lambda_{4, h}$11.12416520.25829226.28719328.58015929.26373929.452134
$\tilde \lambda_{4, h}$44.27037134.58864430.89133329.87077229.60976629.543696
$h$1/41/81/161/321/641/128
$ \lambda_{1, h}$5.9071138.1544179.1558699.4904419.5932509.624793
$\tilde \lambda_{1, h}$11.65628010.4983239.9081789.7224189.6660849.648513
$ \lambda_{2, h}$8.20118812.30882114.29331414.94377915.12854815.178811
$\tilde \lambda_{2, h}$17.97432316.39626615.53354315.28490815.21963315.202913
$ \lambda_{3, h}$9.44449415.20567618.27619419.32490519.62657119.708934
$\tilde \lambda_{3, h}$26.26208322.35362120.45371219.92345319.78598219.750997
$ \lambda_{4, h}$11.12416520.25829226.28719328.58015929.26373929.452134
$\tilde \lambda_{4, h}$44.27037134.58864430.89133329.87077229.60976629.543696
Table 4.  Numerical results for the Lshape domain with $k = 2$
$h$1/41/81/161/321/641/128
$ \lambda_{1, h}$9.0765419.5561569.6158129.6308329.6362239.638331
$\tilde \lambda_{1, h}$12.34563410.0750579.7904039.6983579.6629559.648961
$ \lambda_{2, h}$13.58424115.09738515.19041715.19672215.19720415.197247
$\tilde \lambda_{2, h}$22.66687315.34652015.20291815.19760515.19728515.197256
$ \lambda_{3, h}$16.28028719.51796819.72532519.73829619.73914819.739205
$\tilde \lambda_{3, h}$35.04403020.07688019.75014919.73970019.73923419.739210
$ \lambda_{4, h}$19.96634828.77751229.47617729.51850429.52127829.521467
$\tilde \lambda_{4, h}$74.08112330.74643229.55451829.52292929.52156029.521486
$h$1/41/81/161/321/641/128
$ \lambda_{1, h}$9.0765419.5561569.6158129.6308329.6362239.638331
$\tilde \lambda_{1, h}$12.34563410.0750579.7904039.6983579.6629559.648961
$ \lambda_{2, h}$13.58424115.09738515.19041715.19672215.19720415.197247
$\tilde \lambda_{2, h}$22.66687315.34652015.20291815.19760515.19728515.197256
$ \lambda_{3, h}$16.28028719.51796819.72532519.73829619.73914819.739205
$\tilde \lambda_{3, h}$35.04403020.07688019.75014919.73970019.73923419.739210
$ \lambda_{4, h}$19.96634828.77751229.47617729.51850429.52127829.521467
$\tilde \lambda_{4, h}$74.08112330.74643229.55451829.52292929.52156029.521486
[1]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[5]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (276)
  • HTML views (703)
  • Cited by (1)

Other articles
by authors

[Back to Top]