[1]
|
P. Alstrom and D. Stassinopoulos, Space-time renormalization at the onset of spatio-temporal chaos in coupled maps, Chaos, 2 (1992), 301-306.
doi: 10.1063/1.165872.
|
[2]
|
I. S. Aranson and L. S. Tsimring, Patterns and collective behavior in granular media: Theoretical concepts, Rev. Mod. Phys., 68 (2006), 641-692.
|
[3]
|
J. Argyris, G. Faust and M. Haase, Routes to chaos and turbulence. A computational introduction, Phil. Trans., R. Soc. Lond. A, 344 (1993), 207-234.
doi: 10.1098/rsta.1993.0088.
|
[4]
|
P. Ashwin, E. Covas and R. Tavakol, Transverse instability for non-normal parameters, Nonlinearity, 12 (1999), 563-577.
doi: 10.1088/0951-7715/12/3/009.
|
[5]
|
A. Buka, N. Éber and W. Pesch, Convective patterns in liquid crystals driven by electric field, Electronic-Liquid Crystal Communications, (2005), 1-21, http://www.e-lc.org/tmp/Nandor__Eber_2005_07_12_04_29_54.pdf
doi: 10.1007/1-4020-4355-4_02.
|
[6]
|
H. Chaté and P. Manneville, Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58 (1987), 112-115.
|
[7]
|
P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.
|
[8]
|
C. Crawford and H. Riecke, Oscillon-type structures and their interaction in a Swift-Hohenberg model, Physica D, 129 (1999), 83-92.
doi: 10.1016/S0167-2789(98)00280-2.
|
[9]
|
M. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, 2009.
|
[10]
|
M. Cross and P. C. Hohenberg, Pattern formation outside equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.
doi: 10.1103/RevModPhys.65.851.
|
[11]
|
G. Dangelmayr, Complex dynamics near a Hopf bifurcation with symmetry: A parameter study, Dynamical Systems, 26 (2011), 23-60.
doi: 10.1080/14689367.2010.498371.
|
[12]
|
G. Dangelmayr, G. Acharya, J. Gleeson, I. Oprea and J. Ladd, Diagnosis of spatiotemporal chaos in wave-envelopes of a nematic electroconvection pattern, Phys. Rev. E, 79 (2009), 046215.
doi: 10.1103/PhysRevE.79.046215.
|
[13]
|
G. Dangelmayr, B. Fiedler, K. Kirchgässner and A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability, Addison Wesley Longman Ltd., 1996.
|
[14]
|
G. Dangelmayr and E. Knobloch, Hopf bifurcation with broken circular symmetry, Nonlinearity, 4 (1991), 399-427.
doi: 10.1088/0951-7715/4/2/010.
|
[15]
|
G. Dangelmayr and I. Oprea, A bifurcation study of wave patterns for electroconvection in nematic liquid crystals, Mol. Cryst. Liqu. Cryst, 413 (2004), 305-320.
doi: 10.1080/15421400490437051.
|
[16]
|
G. Dangelmayr and I. Oprea, Modulational stability of travelling waves in 2D anisotropic systems, Journal of Nonlinear Science, 18 (2008), 1-56.
doi: 10.1007/s00332-007-9009-3.
|
[17]
|
G. Dangelmayr and M. Wegelin, Hopf bifurcations in anisotropic systems, in: Golubitsky, M., Luss, D., Strogatz, S. (Eds.), Pattern Formation in Continuous and Coupled Systems, IMA Vol. Math. Appl. , 115 (1999), 33-47.
|
[18]
|
K. E. Daniels, O. Brausch, W. Pesch and E. Bodenschatz, Competition and bistability of ordered undulations and undulation chaos in inclined layer convection, J. Fluid Mech., 597 (2008), 261-282.
|
[19]
|
M. Das, B. Chakrabarti, C. Dasgupta, S. Ramaswamy and A. K. Sood, Routes to spatiotemporal chaos in the rheology of nematogenic fluids, Phys. Rev. E, 71 (2005), 021707.
doi: 10.1103/PhysRevE.71.021707.
|
[20]
|
M. Dennin, G. Ahlers and D. S. Cannel, Spatiotemporal chaos in electroconvection, Science, 272 (1996), 388-390.
doi: 10.1126/science.272.5260.388.
|
[21]
|
W. S. Edwards and S. Fauve, Patterns and quasipatterns in the Faraday experiment, J. Fluid Mech., 278 (1994), 123-148.
doi: 10.1017/S0022112094003642.
|
[22]
|
D. A. Egolf, I. Melnikov, W. Pesch and R. Ecke, Mechanisms of extensive spatiotemporal chaos in Rayleigh Bénard convection, Nature, 404 (200), p733.
doi: 10.1038/35008013.
|
[23]
|
M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces, Phil. Trans. Roy. Soc., 121 (1831), 299-318.
|
[24]
|
M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19 (1978), 25-52.
doi: 10.1007/BF01020332.
|
[25]
|
M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol Ⅱ, Springer Verlag, 1988.
|
[26]
|
G. D. Granzow and H. Riecke, Ordered and disordered defect chaos, Physica A, 249 (1998), 27-35.
doi: 10.1016/S0378-4371(97)00428-7.
|
[27]
|
F. A. Hopf, D. L. Kaplan, H. M. Gibbs and R. L. Shoemaker, Bifurcations to chaos in optical bistability, Phys. Rev. A (3), 25 (1982), 2172-2182.
doi: 10.1103/PhysRevA.25.2172.
|
[28]
|
K. Kaneko, Spatio-temporal chaos in one and two-dimensional coupled map lattices, Physica D, 37 (1989), 60-82.
doi: 10.1016/0167-2789(89)90117-6.
|
[29]
|
R. Kapral, Pattern formation in two-dimensional arrays of coupled, discrete-time oscillators, Phys. Rev. A, 31 (1985), 3868-3679.
doi: 10.1103/PhysRevA.31.3868.
|
[30]
|
H. Kook, P. H. Ling and G. Schmidt, Universal behavior of coupled nonlinear systems, Phys. Rev. A, 43 (1991), 2700-2708.
doi: 10.1103/PhysRevA.43.2700.
|
[31]
|
L. Kramer, E. Ben-Jacob, H. Brand and M. C. Cross, Wavelength selection in systems far from equilibrium, Phys. Rev. Lett., 49 (1982), 1891-1894.
doi: 10.1103/PhysRevLett.49.1891.
|
[32]
|
L. Kramer and W. Pesch, Convection instabilities in nematic liquid crystals, Annual Review of Fluid Mechanics, Annual Reviews, Palo Alto, CA, 27 (1995), 515-541.
doi: 10.1002/9783527609284.ch13.
|
[33]
|
J. Lega, Phase diffusion and weak turbulence, in: G. Dangelmayr, I. Oprea (Eds. ), Dynamics and Bifurcation of Patterns in Dissipative Systems, World Scientific Series on Nonlinear Sciences, Series B, World Scientific Publisher, 12 (2004), 143-157.
|
[34]
|
A. Libchaber and J. Maurer, A Rayleight-Bénard experiment: Helium in a small box, in: T. Riste (Ed.), Nonlinear Phenomena at Phase Transitions and Instabilities, Plenum Press, New York, (1981), 259-286.
|
[35]
|
A. Libchaber, C. Laroche and S. Fauve, Period doubling in mercury, a quantitative measurement, J. Physique Lett. , 43 (1982), L211.
|
[36]
|
A. Libchaber, Experimental aspects of the period doubling scenario, in: L. Garrido (Ed.), Dynamical Systems and Chaos, Springer Lecture Notes in Physics, Springer, Berlin, Heidelberg, 179 (1983), 157-164.
doi: 10.1007/3-540-12276-1_11.
|
[37]
|
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130-141.
|
[38]
|
E. N. Lorenz, Noisy periodicity and reverse bifurcation, in: R. H. G. Helleman (Ed.): Nonlinear Dynamics, Annals of the New York Academy of Sciences, 357 (1979), 282-291.
|
[39]
|
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-67.
|
[40]
|
F. Melo, P. Umbanhowar and H. L. Swinney, Hexagons, kinks, and disorder in oscillated granular layers, Phys. Rev. Lett., 75 (1995), 3838-3841.
doi: 10.1103/PhysRevLett.75.3838.
|
[41]
|
S. W. Morris, E. Bodenschatz, D. S. Cannel and G. Ahlers, Spiral defect chaos in large aspect ratio Rayleigh Bénard convection, Phys. Rev. Lett., 71 (1993), 2026-2029.
doi: 10.1103/PhysRevLett.71.2026.
|
[42]
|
A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.
|
[43]
|
I. Oprea and G. Dangelmayr, Dynamics and bifurcations in the weak electrolyte model for electroconvection of nematic liquid crystals: A Ginzburg Landau approach, European Jr. of Mechanics, B. Fluids, 27 (2008), 726-749.
doi: 10.1016/j.euromechflu.2007.12.004.
|
[44]
|
I. Oprea, I. Triandaf, G. Dangelmayr and I. B. Schwartz, Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection, Chaos, 17 (2007), 023101, 12pp.
|
[45]
|
E. Ott, Chaos in Dynamical Systems, Cambridge University Press, 2002.
|
[46]
|
H. G. Paap and H. Riecke, Drifting vortices in ramped Taylor vortex flow: Quantitative results from phase equations, Physics of Fluids, 3 (1991), 1519-1532.
doi: 10.1063/1.857987.
|
[47]
|
H. Riecke and G. D. Granzow, Double phase slips and bound defect pairs in parametrically driven waves, Proceedings of the 15th Symposium on Energy Engineering Sciences (chao-dyn/9707013,1997).
|
[48]
|
H. Riecke and H. G. Paap, Perfect wave-number selection and drifting patterns in ramped Taylor vortex flow, Phys. Rev. Lett., 59 (1987), 2570-2573.
doi: 10.1103/PhysRevLett.59.2570.
|
[49]
|
H. Riecke and H. G. Paap, Spatio-temporal chaos through ramp-induced Eckhaus instability, Europhy. Lett., 59 (1991), 433-438.
doi: 10.1209/0295-5075/14/5/008.
|
[50]
|
H. G. Schuster and W. Just, Deterministic Chaos, An Introduction, Wiley, 2005.
|
[51]
|
M. Silber, H. Riecke and L. Kramer, Symmetry breaking Hopf bifurcation in anisotropic systems, Physica D, 61 (1990), 260-277.
doi: 10.1016/0167-2789(92)90170-R.
|
[52]
|
M. M. Skoric, M. S. Jovanovic and M. R. Rajkovic, Spatiotemporal intermittency and chaos in stimulated Raman backscattering, Europhys. Lett., 34 (1996), 19-24.
|
[53]
|
C. W. Smith, M. J. Tejwanis and D. A. Farris, Bifurcation universality for first-sound subharmonic generation in superfluid Helium-4, Phys. Rev. Lett., 48 (1982), 492-494.
doi: 10.1103/PhysRevLett.48.492.
|
[54]
|
C. Sparrow,
The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors, Springer, New York, Heidelberg, Berlin, 1982.
|
[55]
|
D. Stassinopoulos and P. Alstrom, Coupled maps: An approach to spatiotemporal chaos, Phys. Rev. A, 45 (1992), 675-691.
doi: 10.1103/PhysRevA.45.675.
|
[56]
|
J. Testa, J. Peréz and C. Jeffries, Evidence for universal chaotic behavior of a driven nonlinear oscillator, Phys. Rev. Lett., 48 (1982), 714-717.
doi: 10.1103/PhysRevLett.48.714.
|
[57]
|
M. Treiber and L. Kramer, Bipolar electrodiffusion model for electroconvection in nematics, Mol. Cryst. Liqu. Cryst., 261 (1995), 311-326.
|
[58]
|
L. S. Tsimring and I. S. Aranson, Localized and cellular patterns in a vibrated granular layer, Phys. Rev. Lett., 79 (1995), p213.
|
[59]
|
P. Umbanhowar, F. Melo and H. L. Swinney, Localized excitations in a vertically vibrated granular layer, Nature (London), 382 (1996), 793-796.
doi: 10.1038/382793a0.
|
[60]
|
S. Venkataramani and E. Ott, Spatiotemporal bifurcation phenomena with temporal period doubling: Patterns in vibrating sand, Phys. Rev. Lett., 80 (1998), 3495-3498.
doi: 10.1103/PhysRevLett.80.3495.
|
[61]
|
M. Wegelin,
Nichtlineare Dynamik Raumzeitlicher Muster in Hierarchischen Systemen, PhD Dissertation, Department of Physics, Tubingen, 1993.
|
[62]
|
R. J. Wiener, G. L. Snyder, M. C. Prange, D. Frediani and P. R. Diaz, Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow with hourglass geometry, Phys. Rev. E, 55 (1997), 5489-5507.
doi: 10.1103/PhysRevE.55.5489.
|
[63]
|
W. J. Yeh and Y. H. Kao, Universal scaling and chaotic behavior of Josephson-junction analog, Phys. Rev. Lett., 49 (1982), 1888-1891.
|
[64]
|
Y. Zou, G. Dangelmayr and I. Oprea. Intermittency and chaos near Hopf bifurcation with broken O(2) X O(2) symmetry, Int. J. Bifurcation and Chaos, 23 (2013), 1350139, 19pp.
|