[1]
|
S. Banu, W. Hu, C. Hurst and S. Tong, Dengue transmission in the Asia-Pacific region: Impact of climate change and socio-environmental factors, Tropical Medicine and International Health, 16 (2011), 598-607.
doi: 10.1111/j.1365-3156.2011.02734.x.
|
[2]
|
S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow and C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504-507.
doi: 10.1038/nature12060.
|
[3]
|
G. Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse and J. M. Hyman, The Basic Reproduction Number $\mathcal{R}_0$ and Effectiveness of Reactive Interventions during Dengue Epidemics: The 2002 Dengue Outbreak in Easter Island, Chile, Math. Biosci. Eng., 10 (2013), 1455-1474.
doi: 10.3934/mbe.2013.10.1455.
|
[4]
|
G. Chowell, P. Diaz-Duenas, J. C. Miller, A. Alcazar-Velazco, J. M. Hyman, P. W. Fenimore and C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epidemic data, Math. Biosci., 208 (2007), 571-589.
doi: 10.1016/j.mbs.2006.11.011.
|
[5]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
|
[6]
|
N. C. Dom, Z. A. Latif, A. H. Ahmad, R. Ismail and B. Pradhan, Manifestation of GIS tools for spatial pattern distribution analysis of dengue fever epidemic in the city of Subang Jaya, Malaysia, Environment Asia, 5 (2012), 82-92.
|
[7]
|
D. A. Focks, E. Daniels, D. G. Haile and J. E. Keesling, A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results, Am. J. Trop. Med. Hyg., 53 (1995), 489-506.
doi: 10.4269/ajtmh.1995.53.489.
|
[8]
|
H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Diff. Eq., 137 (1997), 340-362.
doi: 10.1006/jdeq.1997.3264.
|
[9]
|
A. K. Githeko, S. W. Lindsay, U. E. Confalonieri and J. A. Patz, Climate change and vector-borne diseases: a regional analysis, Bulletin of the World Health Organization, 78 (2000), 1136-1147.
|
[10]
|
D. J. Gubler, Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends in Microbiology, 10 (2002), 100-103.
doi: 10.1016/S0966-842X(01)02288-0.
|
[11]
|
M. J. Hopp and J. A. Foley, Global-scale relationships between climate and the dengue fever vector, Aedes aegypti, Climatic Change, 48 (2001), 441-463.
|
[12]
|
S. B. Hsu, F. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, J. Dynamics and Differential Equations, 23 (2011), 817-842.
doi: 10.1007/s10884-011-9224-3.
|
[13]
|
S. B. Hsu, F. B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Differential Equations, 255 (2013), 265-297.
doi: 10.1016/j.jde.2013.04.006.
|
[14]
|
T. W. Hwang and F.-B. Wang, Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation, Discrete and Continuous Dynamical System Series-B, 18 (2013), 147-161.
|
[15]
|
S. Karl, N. Halder, J. K. Kelso, S. A. Ritchie and G. J. Milne, A spatial simulation model for dengue virus infection in urban areas, BMC Infec. Dis., 14 (2014), p447.
doi: 10.1186/1471-2334-14-447.
|
[16]
|
A. Khan, M. Hassan and M. Imran, Estimating the basic reproduction number for single-strain dengue fever epidemics, Infectious Diseases of Poverty, 3 (2014), p12.
doi: 10.1186/2049-9957-3-12.
|
[17]
|
L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer, M. B. Thomas and T. W. Scott, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc. Nat. Acad. Sci., 108 (2011), 7460-7465.
doi: 10.1073/pnas.1101377108.
|
[18]
|
M. Li, G. Sun, L. Yakob, H. Zhu, Z. Jin and W. Zhang, The Driving Force for 2014 Dengue Outbreak in Guangdong, China, PLoS ONE, 11 (2016), e0166211.
doi: 10.1371/journal.pone.0166211.
|
[19]
|
Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8.
|
[20]
|
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[21]
|
R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. of A.M.S., 321 (1990), 1-44.
|
[22]
|
R. D. Nussbaum, Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem, in Fixed Point Theory, Lecture Notes in Mathematics (eds. E. Fadell, G. Fournier), 886, Springer, New York/Berlin, (1981), 309–330.
|
[23]
|
M. Oki and T. Yamamoto, Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue, PLoS ONE, 7 (2010), e48258.
doi: 10.1371/journal.pone.0048258.
|
[24]
|
A. Pakhare, Y. Sabde, A. Joshi, R. Jain, A. Kokane and R. Joshi, A study of spatial and meteorological determinants of dengue outbreak in Bhopal City in 2014, PLoS Negl. Trop. Dis., 53 (2016), 225-233.
|
[25]
|
W. G. Panhuisa, M. Choisyb, X. Xionga, N. S. Choka and P. Akarasewid, et al., Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia, Proc. Nat. Acad. Sci., 112 (2015), 13069-13074.
|
[26]
|
J. A. Patz, D. Campbell-Lendrum, T. Holloway and J. A. Foley, Impact of regional climate change on human health, Nature, 438 (2005), 310-317.
doi: 10.1038/nature04188.
|
[27]
|
S. T. R. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. C. M. e Silva and M. G. L. Teixeira, Modelling the dynamics of dengue real epidemics, Phil. Trans. R. Soc. A, 368 (2010), 5679-5693.
doi: 10.1098/rsta.2010.0278.
|
[28]
|
M. H. Protter and M. F. Weinberger, Maximum Principles in Differential Equations, Springer Verlag, 1984.
|
[29]
|
V. Racloz, R. Ramsey, S. Tong and W. Hu, Surveillance of dengue fever virus: A review of epidemiological models and early warning systems, J. Vector Borne Dis., 6 (2012), e1648.
doi: 10.1371/journal.pntd.0001648.
|
[30]
|
C. P. Simmons, J. J. Farrar, N. van Vinh Chau and B. Wills, Dengue, N. Engl. J. Med., 366 (2012), 1423-1432.
doi: 10.1056/NEJMra1110265.
|
[31]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.
|
[32]
|
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[33]
|
A. K. Supriatna, Estimating the basic reproduction number of dengue transmission during 2002-2007 outbreaks in Bandung, Indonesia, Dengue Bulletin, 33 (2009), 21-32.
|
[34]
|
R. W. Sutherst, Global change and human vulnerability to vector-borne diseases, Clin. Microbiol. Rev., 17 (2004), 136-173.
doi: 10.1128/CMR.17.1.136-173.2004.
|
[35]
|
M. Teurlai, C. E. Menkes, V. Cavarero, N. Degallier, E. Descloux and J. Grangeon, et al., Socio-economic and climate factors associated with dengue fever spatial heterogeneity: A worked example in New Caledonia, PLoS Negl. Trop. Dis., 9 (2015), e0004211.
doi: 10.1371/journal.pntd.0004211.
|
[36]
|
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
|
[37]
|
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM, J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.
|
[38]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[39]
|
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM. J Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.
|
[40]
|
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.
doi: 10.1137/120872942.
|
[41]
|
WHO, Dengue guidelines for giagnosis, treatment, prevention, and control, Geneva: TDR: World Health Organization, 2009.
|
[42]
|
R. E. Woodruff and T. McMichael, Climate change and human health: All affected bit some more than others, Social Alternatives, 23 (2004), 17-22.
|
[43]
|
H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti and D. M. V. Wanderley, Assessing the effects of temperature on dengue transmission, Epidemiol. Infect., 137 (2009), 1179-1187.
doi: 10.1017/S0950268809002052.
|
[44]
|
H. M. Yang, M. L. G. Macoris, K. C. Galvani, M. T. M. Andrighetti and D. M. V. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137 (2009), 1188-1202.
doi: 10.1017/S0950268809002040.
|
[45]
|
H. M. Yang, M. L. G. Macoris, K. C. Galvani and M. T. M. Andrighetti, Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, Biosystems, 103 (2011), 360-371.
doi: 10.1016/j.biosystems.2010.11.002.
|
[46]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
|