This paper studies the global well-posedness problem on a tropical climate model with fractional dissipation. This system allows us to simultaneously examine a family of equations characterized by the fractional dissipative terms $ (-Δ)^{\mathit{\alpha }}u$ in the equation of the barotropic mode $ u$ and $ (-Δ)^β v$ in the equation of the first baroclinic mode $ v$. We establish the global existence and regularity of the solutions when the total fractional power is 2, namely $ {\mathit{\alpha }}+ β = 2$.
Citation: |
[1] |
S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407.
![]() |
[2] |
H. Bahouri, J. -Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations, Springer, 2011.
![]() ![]() |
[3] |
J. Bergh and J. Löfström,
Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
![]() ![]() |
[4] |
B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, submitted for publication.
![]() |
[5] |
D. Frierson, A. Majda and O. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Comm. Math. Sci., 2 (2004), 591-626.
doi: 10.4310/CMS.2004.v2.n4.a3.![]() ![]() ![]() |
[6] |
M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.
doi: 10.1002/cpa.20253.![]() ![]() |
[7] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. American Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.![]() ![]() ![]() |
[8] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[9] |
J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220 (2016), 983-1001.
doi: 10.1007/s00205-015-0946-y.![]() ![]() ![]() |
[10] |
J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495-4516.
doi: 10.3934/dcds.2016.36.4495.![]() ![]() ![]() |
[11] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
[12] |
C. Miao, J. Wu and Z. Zhang,
Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics, Science Press, Beijing, China, 2012 (in Chinese).
![]() |
[13] |
T. Runst and W. Sickel,
Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.
![]() ![]() |
[14] |
Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307-321.
doi: 10.1016/j.jmaa.2016.08.053.![]() ![]() ![]() |