\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global regularity results for the climate model with fractional dissipation

  • * Corresponding author: Jiahong Wu

    * Corresponding author: Jiahong Wu 
B. Dong was partially supported by the NNSFC (No. 11271019, No. 11571240). J. Wu was supported by NSF grant DMS 1614246 and the AT & T Foundation at Oklahoma State University. H. Zhang was as partially supported by the Research Fund of SMS at Anhui University.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper studies the global well-posedness problem on a tropical climate model with fractional dissipation. This system allows us to simultaneously examine a family of equations characterized by the fractional dissipative terms $ (-Δ)^{\mathit{\alpha }}u$ in the equation of the barotropic mode $ u$ and $ (-Δ)^β v$ in the equation of the first baroclinic mode $ v$. We establish the global existence and regularity of the solutions when the total fractional power is 2, namely $ {\mathit{\alpha }}+ β = 2$.

    Mathematics Subject Classification: Primary: 35Q35, 35B65; Secondary: 76B03.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407. 
    [2] H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, 2011.
    [3] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
    [4] B. Dong, J. Wu, X. Xu and Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, submitted for publication.
    [5] D. FriersonA. Majda and O. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Comm. Math. Sci., 2 (2004), 591-626.  doi: 10.4310/CMS.2004.v2.n4.a3.
    [6] M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.
    [7] C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. American Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.
    [8] C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.
    [9] J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220 (2016), 983-1001.  doi: 10.1007/s00205-015-0946-y.
    [10] J. Li and E. S. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst., 36 (2016), 4495-4516.  doi: 10.3934/dcds.2016.36.4495.
    [11] A. MelletS. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Rat. Mech. Anal., 199 (2011), 493-525.  doi: 10.1007/s00205-010-0354-2.
    [12] C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics, Science Press, Beijing, China, 2012 (in Chinese).
    [13] T. Runst and W. Sickel, Sobolev Spaces of fractional order, Nemytskij operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996.
    [14] Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307-321.  doi: 10.1016/j.jmaa.2016.08.053.
  • 加载中
SHARE

Article Metrics

HTML views(1024) PDF downloads(399) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return