September  2018, 23(7): 2803-2823. doi: 10.3934/dcdsb.2018106

Partitioned second order method for magnetohydrodynamics in Elsässer variables

Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA

* Corresponding author

Received  March 2017 Revised  August 2017 Published  April 2018

Fund Project: The first author was partially supported by the AFOSR under grant FA 9550-16-1-0355, and by the NSF grant DMS-1522574. The second author is partially supported by the AFOSR under grant FA 9550-12-1-0191, and by the NSF grant DMS-1522574.

Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm's law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the computational cost.

This paper is devoted to the design and analysis of a partitioned method for the MHD system in the Elsässer variables. The stability analysis shows that for magnetic Prandtl number of order unity, the method is unconditionally stable. We prove the error estimates and present computational tests that support the theory.

Citation: Yong Li, Catalin Trenchea. Partitioned second order method for magnetohydrodynamics in Elsässer variables. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2803-2823. doi: 10.3934/dcdsb.2018106
References:
[1]

H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405. Google Scholar

[2]

L. BarleonV. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.   Google Scholar

[3]

J. D. BarrowR. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.  doi: 10.1016/j.physrep.2007.04.006.  Google Scholar

[4]

D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. doi: 10.1017/CBO9780511535222.  Google Scholar

[5]

P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.  Google Scholar

[6]

J. ConnorsJ. Howell and W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012), 1297-1319.  doi: 10.1137/090773362.  Google Scholar

[7]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  Google Scholar

[8]

M. DobrowolnyA. Mangeney and P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980), 144-147.  doi: 10.1103/PhysRevLett.45.144.  Google Scholar

[9]

E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169. doi: 10.1080/03091920701523287.  Google Scholar

[10]

E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. doi: 10.1201/9781420055269.  Google Scholar

[11]

W. M. Elsässer, The hydromagnetic equations, Phys. Rev., 79 (1950), 183-183.  doi: 10.1103/PhysRev.79.183.  Google Scholar

[12]

A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.  Google Scholar

[13]

J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17. doi: 10.1007/978-3-540-75712-2_1.  Google Scholar

[14]

S. GaltierS. V. NazarenkoA. C. Newell and A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000), 291-330.  doi: 10.1007/3-540-47038-7_12.  Google Scholar

[15]

P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438 (1995), 763-775.   Google Scholar

[16]

H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.  doi: 10.1016/j.fusengdes.2005.08.086.  Google Scholar

[17]

N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. doi: 10.1103/PhysRevE.70.016308.  Google Scholar

[18]

T. HeisterM. Mohebujjaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017), 21-43.  doi: 10.1007/s10915-016-0288-4.  Google Scholar

[19]

W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.  Google Scholar

[20]

P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.   Google Scholar

[21]

R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965), 1385-1387.  doi: 10.1063/1.1761412.  Google Scholar

[22]

W. LaytonH. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), 1083-1102.  doi: 10.1002/num.21857.  Google Scholar

[23]

T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ. Google Scholar

[24]

E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145–156. doi: 10.1007/978-3-642-76750-0_10.  Google Scholar

[25]

M. MeneguzziU. Frisch and A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981), 1060-1064.  doi: 10.1103/PhysRevLett.47.1060.  Google Scholar

[26]

D. Mitchell and D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988), 349-364.  doi: 10.1007/BF00618593.  Google Scholar

[27]

B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. V. ShebalinW. H. Matthaeus and D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29 (1983), 525-547.  doi: 10.1017/S0022377800000933.  Google Scholar

[30]

S. SmolentsevR. MoreauL. Bühler and C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.  doi: 10.1016/j.fusengdes.2010.02.038.  Google Scholar

[31]

D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308. doi: 10.1063/1.4759157.  Google Scholar

[32]

C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27 (2014), 97-100.  doi: 10.1016/j.aml.2013.06.017.  Google Scholar

[33]

M. K. Verma, Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401 (2004), 229-380.  doi: 10.1016/j.physrep.2004.07.007.  Google Scholar

[34]

I. Veselovsky, Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277 (2001), 219-224.  doi: 10.1007/978-94-010-0904-1_28.  Google Scholar

[35]

N. WilsonA. Labovsky and C. Trenchea, High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15 (2015), 97-110.  doi: 10.1515/cmam-2014-0023.  Google Scholar

[36]

G. Yuksel and R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10 (2013), 74-98.   Google Scholar

show all references

References:
[1]

H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405. Google Scholar

[2]

L. BarleonV. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.   Google Scholar

[3]

J. D. BarrowR. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.  doi: 10.1016/j.physrep.2007.04.006.  Google Scholar

[4]

D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. doi: 10.1017/CBO9780511535222.  Google Scholar

[5]

P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.  Google Scholar

[6]

J. ConnorsJ. Howell and W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012), 1297-1319.  doi: 10.1137/090773362.  Google Scholar

[7]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  Google Scholar

[8]

M. DobrowolnyA. Mangeney and P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980), 144-147.  doi: 10.1103/PhysRevLett.45.144.  Google Scholar

[9]

E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169. doi: 10.1080/03091920701523287.  Google Scholar

[10]

E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. doi: 10.1201/9781420055269.  Google Scholar

[11]

W. M. Elsässer, The hydromagnetic equations, Phys. Rev., 79 (1950), 183-183.  doi: 10.1103/PhysRev.79.183.  Google Scholar

[12]

A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.  Google Scholar

[13]

J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17. doi: 10.1007/978-3-540-75712-2_1.  Google Scholar

[14]

S. GaltierS. V. NazarenkoA. C. Newell and A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000), 291-330.  doi: 10.1007/3-540-47038-7_12.  Google Scholar

[15]

P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438 (1995), 763-775.   Google Scholar

[16]

H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.  doi: 10.1016/j.fusengdes.2005.08.086.  Google Scholar

[17]

N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. doi: 10.1103/PhysRevE.70.016308.  Google Scholar

[18]

T. HeisterM. Mohebujjaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017), 21-43.  doi: 10.1007/s10915-016-0288-4.  Google Scholar

[19]

W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.  Google Scholar

[20]

P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.   Google Scholar

[21]

R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965), 1385-1387.  doi: 10.1063/1.1761412.  Google Scholar

[22]

W. LaytonH. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), 1083-1102.  doi: 10.1002/num.21857.  Google Scholar

[23]

T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ. Google Scholar

[24]

E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145–156. doi: 10.1007/978-3-642-76750-0_10.  Google Scholar

[25]

M. MeneguzziU. Frisch and A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981), 1060-1064.  doi: 10.1103/PhysRevLett.47.1060.  Google Scholar

[26]

D. Mitchell and D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988), 349-364.  doi: 10.1007/BF00618593.  Google Scholar

[27]

B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. V. ShebalinW. H. Matthaeus and D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29 (1983), 525-547.  doi: 10.1017/S0022377800000933.  Google Scholar

[30]

S. SmolentsevR. MoreauL. Bühler and C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.  doi: 10.1016/j.fusengdes.2010.02.038.  Google Scholar

[31]

D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308. doi: 10.1063/1.4759157.  Google Scholar

[32]

C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27 (2014), 97-100.  doi: 10.1016/j.aml.2013.06.017.  Google Scholar

[33]

M. K. Verma, Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401 (2004), 229-380.  doi: 10.1016/j.physrep.2004.07.007.  Google Scholar

[34]

I. Veselovsky, Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277 (2001), 219-224.  doi: 10.1007/978-94-010-0904-1_28.  Google Scholar

[35]

N. WilsonA. Labovsky and C. Trenchea, High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15 (2015), 97-110.  doi: 10.1515/cmam-2014-0023.  Google Scholar

[36]

G. Yuksel and R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10 (2013), 74-98.   Google Scholar

Figure 1.  Log-log plot of the error in Elsässer variables as a function of time step $\Delta t$.
Figure 2.  Energy of the numerical solution.
Table 1.  Convergence rate for algorithm (3.1).
$ \Delta t=h$ $\|z^{+}-z^{+}_{h}\|_{\infty}$ rate $\|\nabla z^{+}-\nabla z^{+}_{h}\|_{2}$ rate $\|z^{-}-z^{-}_{h}\|_{\infty}$ rate $\|\nabla z^{-}-\nabla z^{-}_{h}\|_{2}$ rate
1/16 4.047e-2 - 2.978e+0 - 3.653e-2 - 2.028e+0 -
1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01
$ \Delta t=h$ $\|z^{+}-z^{+}_{h}\|_{\infty}$ rate $\|\nabla z^{+}-\nabla z^{+}_{h}\|_{2}$ rate $\|z^{-}-z^{-}_{h}\|_{\infty}$ rate $\|\nabla z^{-}-\nabla z^{-}_{h}\|_{2}$ rate
1/16 4.047e-2 - 2.978e+0 - 3.653e-2 - 2.028e+0 -
1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01
Table 2.  Convergence rate for algorithm (3.1).
$ \Delta t=h$ $\|z^{+}_{T}-z^{+}_{T,h}\|_{2}$ rate $\|z^{-}_{T}-z^{-}_{T,h}\|_{2}$ rate
1/10 8.4849e-3 - 8.4844e-3 -
1/20 1.0152e-3 3.0651 1.0143e-3 3.0510
1/30 3.0062e-4 3.0174 2.9832e-4 3.0180
1/40 1.3455e-4 2.7345 1.2995e-4 2.7996
$ \Delta t=h$ $\|z^{+}_{T}-z^{+}_{T,h}\|_{2}$ rate $\|z^{-}_{T}-z^{-}_{T,h}\|_{2}$ rate
1/10 8.4849e-3 - 8.4844e-3 -
1/20 1.0152e-3 3.0651 1.0143e-3 3.0510
1/30 3.0062e-4 3.0174 2.9832e-4 3.0180
1/40 1.3455e-4 2.7345 1.2995e-4 2.7996
[1]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[2]

Manuel Núñez. The long-time evolution of mean field magnetohydrodynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 465-478. doi: 10.3934/dcdsb.2004.4.465

[3]

Haiyan Yin. The stability of contact discontinuity for compressible planar magnetohydrodynamics. Kinetic & Related Models, 2017, 10 (4) : 1235-1253. doi: 10.3934/krm.2017047

[4]

O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131

[5]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[6]

Amjad Khan, Dmitry E. Pelinovsky. Long-time stability of small FPU solitary waves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2065-2075. doi: 10.3934/dcds.2017088

[7]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[8]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[9]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[10]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems & Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[11]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[12]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[13]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[14]

Z. B. Ibrahim, N. A. A. Mohd Nasir, K. I. Othman, N. Zainuddin. Adaptive order of block backward differentiation formulas for stiff ODEs. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 95-106. doi: 10.3934/naco.2017006

[15]

Wojciech M. Zajączkowski. Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1447-1482. doi: 10.3934/cpaa.2019070

[16]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[17]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[18]

Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097

[19]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[20]

Desmond J. Higham, Xuerong Mao, Lukasz Szpruch. Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2083-2100. doi: 10.3934/dcdsb.2013.18.2083

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (48)
  • HTML views (356)
  • Cited by (0)

Other articles
by authors

[Back to Top]