\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partitioned second order method for magnetohydrodynamics in Elsässer variables

  • * Corresponding author

    * Corresponding author

The first author was partially supported by the AFOSR under grant FA 9550-16-1-0355, and by the NSF grant DMS-1522574. The second author is partially supported by the AFOSR under grant FA 9550-12-1-0191, and by the NSF grant DMS-1522574.

Abstract Full Text(HTML) Figure(2) / Table(2) Related Papers Cited by
  • Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm's law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the computational cost.

    This paper is devoted to the design and analysis of a partitioned method for the MHD system in the Elsässer variables. The stability analysis shows that for magnetic Prandtl number of order unity, the method is unconditionally stable. We prove the error estimates and present computational tests that support the theory.

    Mathematics Subject Classification: 76W05, 65M12, 65M60, 76D05, 35Q30, 35Q61.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Log-log plot of the error in Elsässer variables as a function of time step $\Delta t$.

    Figure 2.  Energy of the numerical solution.

    Table 1.  Convergence rate for algorithm (3.1).

    $ \Delta t=h$ $\|z^{+}-z^{+}_{h}\|_{\infty}$ rate $\|\nabla z^{+}-\nabla z^{+}_{h}\|_{2}$ rate $\|z^{-}-z^{-}_{h}\|_{\infty}$ rate $\|\nabla z^{-}-\nabla z^{-}_{h}\|_{2}$ rate
    1/16 4.047e-2 - 2.978e+0 - 3.653e-2 - 2.028e+0 -
    1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
    1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
    1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01
     | Show Table
    DownLoad: CSV

    Table 2.  Convergence rate for algorithm (3.1).

    $ \Delta t=h$ $\|z^{+}_{T}-z^{+}_{T,h}\|_{2}$ rate $\|z^{-}_{T}-z^{-}_{T,h}\|_{2}$ rate
    1/10 8.4849e-3 - 8.4844e-3 -
    1/20 1.0152e-3 3.0651 1.0143e-3 3.0510
    1/30 3.0062e-4 3.0174 2.9832e-4 3.0180
    1/40 1.3455e-4 2.7345 1.2995e-4 2.7996
     | Show Table
    DownLoad: CSV
  •   H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405.
      L. Barleon , V. Casal  and  L. Lenhart , MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991) , 401-412. 
      J. D. Barrow , R. Maartens  and  C. G. Tsagas , Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007) , 131-171.  doi: 10.1016/j.physrep.2007.04.006.
      D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. doi: 10.1017/CBO9780511535222.
      P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.
      J. Connors , J. Howell  and  W. Layton , Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012) , 1297-1319.  doi: 10.1137/090773362.
      P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
      M. Dobrowolny , A. Mangeney  and  P. Veltri , Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980) , 144-147.  doi: 10.1103/PhysRevLett.45.144.
      E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169. doi: 10.1080/03091920701523287.
      E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. doi: 10.1201/9781420055269.
      W. M. Elsässer , The hydromagnetic equations, Phys. Rev., 79 (1950) , 183-183.  doi: 10.1103/PhysRev.79.183.
      A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.
      J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17. doi: 10.1007/978-3-540-75712-2_1.
      S. Galtier , S. V. Nazarenko , A. C. Newell  and  A. Pouquet , A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000) , 291-330.  doi: 10.1007/3-540-47038-7_12.
      P. Goldreich  and  S. Sridhar , Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438 (1995) , 763-775. 
      H. Hashizume , Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006) , 1431-1438.  doi: 10.1016/j.fusengdes.2005.08.086.
      N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. doi: 10.1103/PhysRevE.70.016308.
      T. Heister , M. Mohebujjaman  and  L. G. Rebholz , Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017) , 21-43.  doi: 10.1007/s10915-016-0288-4.
      W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.
      P. S. Iroshnikov , Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964) , 566-571. 
      R. H. Kraichnan , Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965) , 1385-1387.  doi: 10.1063/1.1761412.
      W. Layton , H. Tran  and  C. Trenchea , Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014) , 1083-1102.  doi: 10.1002/num.21857.
      T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ.
      E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145–156. doi: 10.1007/978-3-642-76750-0_10.
      M. Meneguzzi , U. Frisch  and  A. Pouquet , Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981) , 1060-1064.  doi: 10.1103/PhysRevLett.47.1060.
      D. Mitchell  and  D. Gubser , Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988) , 349-364.  doi: 10.1007/BF00618593.
      B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.
      M. Sermange  and  R. Temam , Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983) , 635-664.  doi: 10.1002/cpa.3160360506.
      J. V. Shebalin , W. H. Matthaeus  and  D. Montgomery , Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29 (1983) , 525-547.  doi: 10.1017/S0022377800000933.
      S. Smolentsev , R. Moreau , L. Bühler  and  C. Mistrangelo , MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010) , 1196-1205.  doi: 10.1016/j.fusengdes.2010.02.038.
      D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308. doi: 10.1063/1.4759157.
      C. Trenchea , Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27 (2014) , 97-100.  doi: 10.1016/j.aml.2013.06.017.
      M. K. Verma , Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401 (2004) , 229-380.  doi: 10.1016/j.physrep.2004.07.007.
      I. Veselovsky , Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277 (2001) , 219-224.  doi: 10.1007/978-94-010-0904-1_28.
      N. Wilson , A. Labovsky  and  C. Trenchea , High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15 (2015) , 97-110.  doi: 10.1515/cmam-2014-0023.
      G. Yuksel  and  R. Ingram , Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10 (2013) , 74-98. 
  • 加载中

Figures(2)

Tables(2)

SHARE

Article Metrics

HTML views(858) PDF downloads(270) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return