September  2018, 23(7): 2803-2823. doi: 10.3934/dcdsb.2018106

Partitioned second order method for magnetohydrodynamics in Elsässer variables

Department of Mathematics, 301 Thackeray Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA

* Corresponding author

Received  March 2017 Revised  August 2017 Published  April 2018

Fund Project: The first author was partially supported by the AFOSR under grant FA 9550-16-1-0355, and by the NSF grant DMS-1522574. The second author is partially supported by the AFOSR under grant FA 9550-12-1-0191, and by the NSF grant DMS-1522574.

Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting fluids, involving Navier-Stokes equations coupled with Maxwell equations via Lorentz force and Ohm's law. Monolithic methods, which solve fully coupled MHD systems, are computationally expensive. Partitioned methods, on the other hand, decouple the full system and solve subproblems in parallel, and thus reduce the computational cost.

This paper is devoted to the design and analysis of a partitioned method for the MHD system in the Elsässer variables. The stability analysis shows that for magnetic Prandtl number of order unity, the method is unconditionally stable. We prove the error estimates and present computational tests that support the theory.

Citation: Yong Li, Catalin Trenchea. Partitioned second order method for magnetohydrodynamics in Elsässer variables. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2803-2823. doi: 10.3934/dcdsb.2018106
References:
[1]

H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405. Google Scholar

[2]

L. BarleonV. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.   Google Scholar

[3]

J. D. BarrowR. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.  doi: 10.1016/j.physrep.2007.04.006.  Google Scholar

[4]

D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. doi: 10.1017/CBO9780511535222.  Google Scholar

[5]

P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.  Google Scholar

[6]

J. ConnorsJ. Howell and W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012), 1297-1319.  doi: 10.1137/090773362.  Google Scholar

[7]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  Google Scholar

[8]

M. DobrowolnyA. Mangeney and P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980), 144-147.  doi: 10.1103/PhysRevLett.45.144.  Google Scholar

[9]

E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169. doi: 10.1080/03091920701523287.  Google Scholar

[10]

E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. doi: 10.1201/9781420055269.  Google Scholar

[11]

W. M. Elsässer, The hydromagnetic equations, Phys. Rev., 79 (1950), 183-183.  doi: 10.1103/PhysRev.79.183.  Google Scholar

[12]

A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.  Google Scholar

[13]

J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17. doi: 10.1007/978-3-540-75712-2_1.  Google Scholar

[14]

S. GaltierS. V. NazarenkoA. C. Newell and A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000), 291-330.  doi: 10.1007/3-540-47038-7_12.  Google Scholar

[15]

P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438 (1995), 763-775.   Google Scholar

[16]

H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.  doi: 10.1016/j.fusengdes.2005.08.086.  Google Scholar

[17]

N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. doi: 10.1103/PhysRevE.70.016308.  Google Scholar

[18]

T. HeisterM. Mohebujjaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017), 21-43.  doi: 10.1007/s10915-016-0288-4.  Google Scholar

[19]

W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.  Google Scholar

[20]

P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.   Google Scholar

[21]

R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965), 1385-1387.  doi: 10.1063/1.1761412.  Google Scholar

[22]

W. LaytonH. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), 1083-1102.  doi: 10.1002/num.21857.  Google Scholar

[23]

T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ. Google Scholar

[24]

E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145–156. doi: 10.1007/978-3-642-76750-0_10.  Google Scholar

[25]

M. MeneguzziU. Frisch and A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981), 1060-1064.  doi: 10.1103/PhysRevLett.47.1060.  Google Scholar

[26]

D. Mitchell and D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988), 349-364.  doi: 10.1007/BF00618593.  Google Scholar

[27]

B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. V. ShebalinW. H. Matthaeus and D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29 (1983), 525-547.  doi: 10.1017/S0022377800000933.  Google Scholar

[30]

S. SmolentsevR. MoreauL. Bühler and C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.  doi: 10.1016/j.fusengdes.2010.02.038.  Google Scholar

[31]

D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308. doi: 10.1063/1.4759157.  Google Scholar

[32]

C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27 (2014), 97-100.  doi: 10.1016/j.aml.2013.06.017.  Google Scholar

[33]

M. K. Verma, Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401 (2004), 229-380.  doi: 10.1016/j.physrep.2004.07.007.  Google Scholar

[34]

I. Veselovsky, Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277 (2001), 219-224.  doi: 10.1007/978-94-010-0904-1_28.  Google Scholar

[35]

N. WilsonA. Labovsky and C. Trenchea, High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15 (2015), 97-110.  doi: 10.1515/cmam-2014-0023.  Google Scholar

[36]

G. Yuksel and R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10 (2013), 74-98.   Google Scholar

show all references

References:
[1]

H. Alfvén, Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), p405. Google Scholar

[2]

L. BarleonV. Casal and L. Lenhart, MHD flow in liquid-metal-cooled blankets, Fusion Eng. Des., 14 (1991), 401-412.   Google Scholar

[3]

J. D. BarrowR. Maartens and C. G. Tsagas, Cosmology with inhomogeneous magnetic fields, Phys. Rep., 449 (2007), 131-171.  doi: 10.1016/j.physrep.2007.04.006.  Google Scholar

[4]

D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge University Press, 2003. doi: 10.1017/CBO9780511535222.  Google Scholar

[5]

P. Bodenheimer, G. P. Laughlin, M. Różyczka and H. W. Yorke, Numerical Methods in Astrophysics, Series in Astronomy and Astrophysics, Taylor & Francis, New York, 2007.  Google Scholar

[6]

J. ConnorsJ. Howell and W. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM Journal on Numerical Analysis, 50 (2012), 1297-1319.  doi: 10.1137/090773362.  Google Scholar

[7]

P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.  Google Scholar

[8]

M. DobrowolnyA. Mangeney and P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45 (1980), 144-147.  doi: 10.1103/PhysRevLett.45.144.  Google Scholar

[9]

E. Dormy and M. Núñez, Introduction [Special issue: Magnetohydrodynamics in astrophysics and geophysics], Geophys. Astrophys. Fluid Dyn., 101 (2007), p169. doi: 10.1080/03091920701523287.  Google Scholar

[10]

E. Dormy and Andrew M. Soward (eds.), Mathematical Aspects of Natural Dynamos, vol. 13 of Fluid Mechanics of Astrophysics and Geophysics, Grenoble Sciences. Universite Joseph Fourier, Grenoble, 2007. doi: 10.1201/9781420055269.  Google Scholar

[11]

W. M. Elsässer, The hydromagnetic equations, Phys. Rev., 79 (1950), 183-183.  doi: 10.1103/PhysRev.79.183.  Google Scholar

[12]

A. Fierros Palacios, The Hamilton-type Principle in Fluid Dynamics, Springer, Vienna, 2006, Fundamentals and applications to magnetohydrodynamics, thermodynamics, and astrophysics.  Google Scholar

[13]

J. A. Font, General relativistic hydrodynamics and magnetohydrodynamics: Hyperbolic systems in relativistic astrophysics, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008, 3–17. doi: 10.1007/978-3-540-75712-2_1.  Google Scholar

[14]

S. GaltierS. V. NazarenkoA. C. Newell and A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics, Part of the Lecture Notes in Physics book series, 536 (2000), 291-330.  doi: 10.1007/3-540-47038-7_12.  Google Scholar

[15]

P. Goldreich and S. Sridhar, Toward a theory of interstellar turbulence. Ⅱ: Strong Alfvénic turbulence, ApJ, 438 (1995), 763-775.   Google Scholar

[16]

H. Hashizume, Numerical and experimental research to solve MHD problem in liquid blanket system, Fusion Eng. Des., 81 (2006), 1431-1438.  doi: 10.1016/j.fusengdes.2005.08.086.  Google Scholar

[17]

N. Haugen, A. Brandenburg and W. Dobler, Simulations of nonhelical hydromagnetic turbulence, Phys. Rev. E, 70 (2004), 016308. doi: 10.1103/PhysRevE.70.016308.  Google Scholar

[18]

T. HeisterM. Mohebujjaman and L. G. Rebholz, Decoupled, unconditionally stable, higher order discretizations for mhd flow simulation, Journal of Scientific Computing, 71 (2017), 21-43.  doi: 10.1007/s10915-016-0288-4.  Google Scholar

[19]

W. Hillebrandt and F. Kupka (eds.), Interdisciplinary Aspects of Turbulence, vol. 756 of Lecture Notes in Physics, Springer-Verlag, Berlin, 2009.  Google Scholar

[20]

P. S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.   Google Scholar

[21]

R. H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8 (1965), 1385-1387.  doi: 10.1063/1.1761412.  Google Scholar

[22]

W. LaytonH. Tran and C. Trenchea, Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows, Numer. Methods Partial Differential Equations, 30 (2014), 1083-1102.  doi: 10.1002/num.21857.  Google Scholar

[23]

T. Lin, J. Gilbert, R. Kossowsky and P. S. U. S. COLLEGE., Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles, Defense Technical Information Center, 1990, URL http://books.google.com/books?id=GvhwNwAACAAJ. Google Scholar

[24]

E. Marsch, Turbulence in the solar wind, in Reviews in Modern Astronomy (ed. G. Klare), vol. 4 of Reviews in Modern Astronomy, Springer Berlin Heidelberg, 1991,145–156. doi: 10.1007/978-3-642-76750-0_10.  Google Scholar

[25]

M. MeneguzziU. Frisch and A. Pouquet, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett., 47 (1981), 1060-1064.  doi: 10.1103/PhysRevLett.47.1060.  Google Scholar

[26]

D. Mitchell and D. Gubser, Magnetohydrodynamic ship propulsion with superconducting magnets, J. Supercond., 1 (1988), 349-364.  doi: 10.1007/BF00618593.  Google Scholar

[27]

B. Punsly, Black Hole Gravitohydromagnetics, vol. 355 of Astrophysics and Space Science Library, 2nd edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[28]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[29]

J. V. ShebalinW. H. Matthaeus and D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field, J. Plasma Phys., 29 (1983), 525-547.  doi: 10.1017/S0022377800000933.  Google Scholar

[30]

S. SmolentsevR. MoreauL. Bühler and C. Mistrangelo, MHD thermofluid issues of liquid-metal blankets: Phenomena and advances, Fusion Eng. Des., 85 (2010), 1196-1205.  doi: 10.1016/j.fusengdes.2010.02.038.  Google Scholar

[31]

D. Sondak and A. A. Oberai, Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation, Phys. Plasmas, 19 (2012), 102308. doi: 10.1063/1.4759157.  Google Scholar

[32]

C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27 (2014), 97-100.  doi: 10.1016/j.aml.2013.06.017.  Google Scholar

[33]

M. K. Verma, Statistical theory of magnetohydrodynamic turbulence: Recent results, Phys. Rep., 401 (2004), 229-380.  doi: 10.1016/j.physrep.2004.07.007.  Google Scholar

[34]

I. Veselovsky, Turbulence and waves in the solar wind formation region and the heliosphere, Astrophys. Space Sci., 277 (2001), 219-224.  doi: 10.1007/978-94-010-0904-1_28.  Google Scholar

[35]

N. WilsonA. Labovsky and C. Trenchea, High accuracy method for magnetohydrodynamics system in Elsässer variables, Comput. Methods Appl. Math., 15 (2015), 97-110.  doi: 10.1515/cmam-2014-0023.  Google Scholar

[36]

G. Yuksel and R. Ingram, Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers, Int. J. Numer. Anal. Model., 10 (2013), 74-98.   Google Scholar

Figure 1.  Log-log plot of the error in Elsässer variables as a function of time step $\Delta t$.
Figure 2.  Energy of the numerical solution.
Table 1.  Convergence rate for algorithm (3.1).
$ \Delta t=h$ $\|z^{+}-z^{+}_{h}\|_{\infty}$ rate $\|\nabla z^{+}-\nabla z^{+}_{h}\|_{2}$ rate $\|z^{-}-z^{-}_{h}\|_{\infty}$ rate $\|\nabla z^{-}-\nabla z^{-}_{h}\|_{2}$ rate
1/16 4.047e-2 - 2.978e+0 - 3.653e-2 - 2.028e+0 -
1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01
$ \Delta t=h$ $\|z^{+}-z^{+}_{h}\|_{\infty}$ rate $\|\nabla z^{+}-\nabla z^{+}_{h}\|_{2}$ rate $\|z^{-}-z^{-}_{h}\|_{\infty}$ rate $\|\nabla z^{-}-\nabla z^{-}_{h}\|_{2}$ rate
1/16 4.047e-2 - 2.978e+0 - 3.653e-2 - 2.028e+0 -
1/32 6.701e-3 2.59 8.755e-1 1.77 8.536e-3 2.10 7.035e-1 1.53
1/64 1.360e-3 2.30 1.676e-1 2.38 2.101e-3 2.02 1.812e-1 1.96
1/128 3.359e-4 2.02 2.930e-2 2.51 5.217e-4 2.01 4.497e-2 2.01
Table 2.  Convergence rate for algorithm (3.1).
$ \Delta t=h$ $\|z^{+}_{T}-z^{+}_{T,h}\|_{2}$ rate $\|z^{-}_{T}-z^{-}_{T,h}\|_{2}$ rate
1/10 8.4849e-3 - 8.4844e-3 -
1/20 1.0152e-3 3.0651 1.0143e-3 3.0510
1/30 3.0062e-4 3.0174 2.9832e-4 3.0180
1/40 1.3455e-4 2.7345 1.2995e-4 2.7996
$ \Delta t=h$ $\|z^{+}_{T}-z^{+}_{T,h}\|_{2}$ rate $\|z^{-}_{T}-z^{-}_{T,h}\|_{2}$ rate
1/10 8.4849e-3 - 8.4844e-3 -
1/20 1.0152e-3 3.0651 1.0143e-3 3.0510
1/30 3.0062e-4 3.0174 2.9832e-4 3.0180
1/40 1.3455e-4 2.7345 1.2995e-4 2.7996
[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[18]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (96)
  • HTML views (407)
  • Cited by (0)

Other articles
by authors

[Back to Top]