EOC of |
||
80 | 3.1601e-01 | |
160 | 1.3607e-01 | 1.2156 |
320 | 5.3584e-02 | 1.3445 |
640 | 2.1350e-02 | 1.3276 |
1280 | 1.0176e-02 | 1.0691 |
2560 | 4.9566e-03 | 1.0377 |
5120 | 1.7975e-03 | 1.4633 |
10240 | 3.8505e-04 | 2.2229 |
We consider a moving shutter and non-deterministic generalization of the diffraction in time model introduced by Moshinsky several decades ago to study a class of quantum transients. We first develop a moving-mesh finite element method (FEM) to simulate the determisitic version of the model. We then apply the FEM and multilevel Monte Carlo (MLMC) algorithm to the stochastic moving-domain model for simulation of approximate statistical moments of the density profile of the stochastic transients.
Citation: |
Figure 5.
Adaptively chosen values of
Table 1.
Convergence of the moving-mesh FEM DiT model using a reference solution with
EOC of |
||
80 | 3.1601e-01 | |
160 | 1.3607e-01 | 1.2156 |
320 | 5.3584e-02 | 1.3445 |
640 | 2.1350e-02 | 1.3276 |
1280 | 1.0176e-02 | 1.0691 |
2560 | 4.9566e-03 | 1.0377 |
5120 | 1.7975e-03 | 1.4633 |
10240 | 3.8505e-04 | 2.2229 |
Table 2.
4.6156 | 4.6199 | 4.6282 | 4.6289 |
Table 3.
4.6256 | 4.6307 | 4.6276 | 4.6276 |
[1] |
C. J. Budd, W. Huang and R. D. Russell, Adaptivity with moving grids, Acta Numerica, 18 (2009), 111-241.
![]() ![]() |
[2] |
A. del Campo, G. Garcia-Calderón and J. Muga, Quantum transients, Phys. Reports, 476 (2009), 1-50.
![]() |
[3] |
J. Dick, F. Y. Kuo, Q. L. Gia and C. Schwab, Multilevel higher order QMC Petrov-Galerkin discretization for affine parametric operator equations, SIAM J. NUMER. ANAL., 54 (2016), 2541-2568.
doi: 10.1137/16M1078690.![]() ![]() ![]() |
[4] |
M. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328.
doi: 10.1017/S096249291500001X.![]() ![]() ![]() |
[5] |
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004.
![]() ![]() |
[6] |
A. Goussev, Diffraction in time: An exactly solvable model, Phys. Review A, 87 (2012), 053621.
doi: 10.1103/PhysRevA.87.053621.![]() ![]() |
[7] |
T. Kimura, N. Sato and S. Iwata, Application of the higher order finite-element method to one-dimensional Schrödinger equation, J. Comput. Chem., 9 (1998), 827-835.
doi: 10.1002/jcc.540090805.![]() ![]() |
[8] |
T. E. Lee, M. J. Baines and S. Langdon, A finite difference moving mesh method based on conservation for moving boundary problems, J. Comput. Appl. Math., 288 (2015), 1-17.
doi: 10.1016/j.cam.2015.03.032.![]() ![]() ![]() |
[9] |
O. P. L. Maître and O. M. Kino, Spectral Methods for Uncertainty Quantification, Springer, 2010.
![]() ![]() |
[10] |
M. Moshinsky, Diffraction in time, Phys. Review, 88 (1952), 625-631.
doi: 10.1103/PhysRev.88.625.![]() ![]() ![]() |
[11] |
A. Nissen, G. Kreiss and M. Gerritsen, High order stable finite difference methods for the Schrödinger equation, J. Sci. Computing, 55 (2013), 173-199.
doi: 10.1007/s10915-012-9628-1.![]() ![]() ![]() |
[12] |
Z. Romanowski, Application of h-adaptive, high order finite element method to solve radial Schrödinger equation, Molecular Physics, 107 (2009), 1339-1348.
doi: 10.1080/00268970902873554.![]() ![]() |