$h$ | LTEmean | LTEmax | $\mu_{\rm{appr}}(N_f/2,N_f/2)$ |
$7.5E-1$ | $1.37E10$ | $1.51E11$ | $7.68E-1$ |
$7.5E-2$ | $3.75E-3$ | $9.42E-3$ | $9.03E-3$ |
$7.5E-3$ | $3.60E-7$ | $6.38E-4$ | $-9.70E-2$ |
$7.5E-4$ | $1.95E-9$ | $6.24E-5$ | $-9.04E-2$ |
We generalize the theory of underlying one-step methods to strictly stable general linear methods (GLMs) solving nonautonomous ordinary differential equations (ODEs) that satisfy a global Lipschitz condition. We combine this theory with the Lyapunov and Sacker-Sell spectral stability theory for one-step methods developed in [
Citation: |
Figure 1. Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of $h$. Right: Logarithmic plot of the 2-norm of the numerical solution versus time for various values of $h$. The parameter values used were $a_1=a_2=1.2$, $b_1 = -0.14$, $b_2=-0.15$, $\beta=10.0$, $\omega = 1$ with a final time of $t_f = 40$ and the initial condition $x(0)=(1,0)^T$.
Figure 2. Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of $h$. Right: Logarithmic plot of the 2-norm of the numerical solution versus time for various values of $h$. The parameter values used were using $b_1 = -0.5$, $b_2=-.055$, $\beta=1.0$, $\omega = 1$, and a final time of $t_f = 100$ for various values of $a=a_1=a_2$ using the step-sizes $h=0.05$ and the initial condition $x(0)=(1,0)^T$.
Table 1.
Results of an experiment for the solution of (3) using BDF2,
$h$ | LTEmean | LTEmax | $\mu_{\rm{appr}}(N_f/2,N_f/2)$ |
$7.5E-1$ | $1.37E10$ | $1.51E11$ | $7.68E-1$ |
$7.5E-2$ | $3.75E-3$ | $9.42E-3$ | $9.03E-3$ |
$7.5E-3$ | $3.60E-7$ | $6.38E-4$ | $-9.70E-2$ |
$7.5E-4$ | $1.95E-9$ | $6.24E-5$ | $-9.04E-2$ |
Table 2.
Results of an experiment for the solution of (3) using BDF2, using
$a_1=a_2=a$ | LTEmean | LTEmax | $\mu_{\rm{appr}}(N_f/2,N_f/2)$ | $\tau_{\rm{max}}$ |
$1.15$ | $5.50E-5$ | $4.38E-3$ | $-2.33E-2$ | $1.068$ |
$1.45$ | $1.18E-4$ | $5.02E-3$ | $-1.69E-3$ | $1.086$ |
$1.75$ | $2.88E-4$ | $5.70E-3$ | $1.78E-2$ | $1.11$ |
$2.05$ | $7.96E-4$ | $6.4E-3$ | $3.64E-2$ | $1.23$ |
B. Aulbach
, The fundamental existence theorem on invariant fiber bundles, J. Differ. Equ. Appl., 3 (1998)
, 501-537.
doi: 10.1080/10236199708808118.![]() ![]() ![]() |
|
B. Aulbach
, C. Pötzsche
and S. Siegmund
, A smoothness theorem for invariant fiber bundles, J. Dynam. Differential Equations, 14 (2002)
, 519-547.
doi: 10.1023/A:1016383031231.![]() ![]() ![]() |
|
B. Aulbach, M. Rasmussen and S. Siegmund, Invariant manifolds as pullback attractors of nonautonomous difference equations, in Proceedings of the Eighth International Conference on Difference Equations and Applications (eds. B. Aulbach, O. Dosly, S. Elaydi, G. Ladas), Chapman & Hall/CRC, Boca Raton, FL (2005), 23–37.
![]() ![]() |
|
B. Aulbach
, M. Rasmussen
and S. Siegmund
, Invariant manifolds as pullback attractors of nonautonomous differential equations, Discrete Contin. Dyn. Syst., 15 (2006)
, 579-596.
doi: 10.3934/dcds.2006.15.579.![]() ![]() ![]() |
|
B. Aulbach
and T. Wanner
, Invariant foliations and decoupling nonautonomous difference equations, J. Difference Eq. Appl., 9 (2003)
, 459-472.
doi: 10.1080/1023619031000076524.![]() ![]() ![]() |
|
W.-J. Beyn
, On invariant close curves for one-step methods, Numer. Math., 51 (1987)
, 103-122.
doi: 10.1007/BF01399697.![]() ![]() ![]() |
|
J. Butcher
, The equivalence of algebraic stability and AN-stability, BIT, 27 (1987)
, 510-533.
doi: 10.1007/BF01937275.![]() ![]() ![]() |
|
J. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods, Wiley-Interscience New York, NY, 1987.
![]() ![]() |
|
W. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978.
doi: 10.1007/BFb0067780.![]() ![]() ![]() |
|
G. Dahlquist
, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scan., 4 (1956)
, 33-53.
doi: 10.7146/math.scand.a-10454.![]() ![]() ![]() |
|
G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential equations, Kungl. Tekn. Högsk. Handl. Stockholm. 130 (1959), 87 pp.
![]() ![]() |
|
G. Dahlquist
, A special stability problem for linear multistep methods, BIT, 3 (1963)
, 27-43.
doi: 10.1007/BF01963532.![]() ![]() ![]() |
|
R. D'Ambrosio
, E. Hairer
and C. Zbinden
, G-symplecticity implies conjugate-symplecticity of the underlying one-step method, BIT, 53 (2013)
, 867-872.
doi: 10.1007/s10543-013-0437-1.![]() ![]() ![]() |
|
L. Dieci
and E. S. Van Vleck
, Computation of a few Lyapunov exponents for continuous and discrete dynamical systems, Appl. Numer. Math., 17 (1995)
, 275-291.
doi: 10.1016/0168-9274(95)00033-Q.![]() ![]() ![]() |
|
L. Dieci
and E. S. Van Vleck
, Lyapunov spectral intervals: Theory and computation, SIAM J. Numer. Anal., 40 (2002)
, 516-542.
doi: 10.1137/S0036142901392304.![]() ![]() ![]() |
|
L. Dieci
and E. S. Van Vleck
, On the error in computing Lyapunov exponents by QR Methods, Numer. Math., 101 (2005)
, 619-642.
doi: 10.1007/s00211-005-0644-z.![]() ![]() ![]() |
|
L. Dieci
and E. S. Van Vleck
, Perturbation theory for approximation of Lyapunov exponents by QR methods, J. Dynam. Differential Equations, 18 (2006)
, 825-840.
doi: 10.1007/s10884-006-9024-3.![]() ![]() ![]() |
|
L. Dieci
and E. S. Van Vleck
, Lyapunov and Sacker-Sell spectral intervals, J. Dynam. Differential Equations, 19 (2007)
, 265-293.
doi: 10.1007/s10884-006-9030-5.![]() ![]() ![]() |
|
J. Eckmann
and D. Ruelle
, Ergodic theory of chaos and strange attractors, Rev. Modern Phy., 57 (1985)
, 617-656.
doi: 10.1103/RevModPhys.57.617.![]() ![]() ![]() |
|
T. Eirola
, Invariant curves of one-step methods, BIT, 28 (1988)
, 113-122.
doi: 10.1007/BF01934699.![]() ![]() ![]() |
|
T. Eirola
and O. Nevanlinna
, What do multistep methods approximate?, Numer. Math., 53 (1988)
, 559-569.
doi: 10.1007/BF01397552.![]() ![]() ![]() |
|
E. Hairer
, Conjugate-symplecticity of linear multistep methods, J. Comput. Math., 26 (2008)
, 657-659.
![]() ![]() |
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-662-05018-7.![]() ![]() ![]() |
|
Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John Wiley & Sons Inc., Hoboken, N. J., 2009.
![]() ![]() |
|
U. Kirchgraber
, Multistep methods are essentially one-step methods, Numer. Math., 48 (1986)
, 85-90.
doi: 10.1007/BF01389443.![]() ![]() ![]() |
|
H.-O. Kreiss
, Difference methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 15 (1978)
, 21-58.
doi: 10.1137/0715003.![]() ![]() ![]() |
|
G. Leonov
and N. Kuznetsov
, Time-varying linearization and the Perron effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007)
, 1079-1107.
doi: 10.1142/S0218127407017732.![]() ![]() ![]() |
|
A. Lyapunov
, The general problem of the stability of motion, Internat. J. Control, 55 (1992)
, 521-790.
doi: 10.1080/00207179208934253.![]() ![]() ![]() |
|
O. Perron
, Die stabilitätsfrage bei differentialgleichungen, Math. Z., 32 (1930)
, 703-728.
doi: 10.1007/BF01194662.![]() ![]() ![]() |
|
C. Pötzsche
, Fine structure of the dichotomy spectrum, Integral Equations and Operator Theory, 73 (2012)
, 107-151.
doi: 10.1007/s00020-012-1959-7.![]() ![]() ![]() |
|
C. Pötzsche
and M. Rasmussen
, Computation of integral manifolds for Carathéodory differential equations, IMA J. Numer. Anal., 30 (2010)
, 401-430.
doi: 10.1093/imanum/drn059.![]() ![]() ![]() |
|
R. Sacker
and G. Sell
, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978)
, 320-358.
doi: 10.1016/0022-0396(78)90057-8.![]() ![]() ![]() |
|
R. Johnson
, K. Palmer
and G. Sell
, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987)
, 1-33.
doi: 10.1137/0518001.![]() ![]() ![]() |
|
A. Steyer, A Lyapunov Exponent Based Stability Theory for Ordinary Differential Equation Initial Value Problem Solvers, Ph. D thesis, University of Kansas, 2016.
![]() ![]() |
|
A. Steyer
and E. S. Van Vleck
, A step-size selection strategy for explicit Runge-Kutta methods based on Lyapunov exponent theory, J. Comp. Appld. Math., 292 (2016)
, 703-719.
doi: 10.1016/j.cam.2015.03.056.![]() ![]() ![]() |
|
A. Steyer and E. S. Van Vleck, A Lyapunov and Sacker-Sell Spectral Stability Theory for One-Step Methods, Submitted for publication, 2017.
![]() |
|
K. Nipp
and D. Stoffer
, Attractive invariant manifolds for maps: Existence, smoothness and continuous dependence on the map, Research report, Applied Mathematics, ETH-Zurich, (1992)
, 92-111.
![]() |
|
D. Stoffer
, General linear methods: Connection to one-step methods and invariant curves, Numer. Math., 64 (1993)
, 395-408.
doi: 10.1007/BF01388696.![]() ![]() ![]() |
|
E. S. Van Vleck
, On the error in the product QR decomposition, SIAM J. Matrix Anal. Appl., 31 (2009/2010)
, 1775-1791.
doi: 10.1137/090761562.![]() ![]() ![]() |
Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of
Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of