January  2019, 24(1): 127-147. doi: 10.3934/dcdsb.2018111

A dimension splitting and characteristic projection method for three-dimensional incompressible flow

1. 

School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. 

Department of Civil and Mechanical Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA

3. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

4. 

School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523000, China

5. 

Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO, 64509, USA

* Corresponding author: Yuchuan Chu(ychuan.chu@hit.edu.cn)

Received  May 2017 Revised  September 2017 Published  March 2018

Fund Project: The first author is supported by the Fundamental Research Funds for the Central Universities of China, grant 2682015CX044.

A dimension splitting and characteristic projection method is proposed for three-dimensional incompressible flow. First, the characteristics method is adopted to obtain temporal semi-discretization scheme. For the remaining Stokes equations we present a projection method to deal with the incompressibility constraint. In conclusion only independent linear elliptic equations need to be calculated at each step. Furthermore on account of splitting property of dimension splitting method, all the computations are carried out on two-dimensional manifolds, which greatly reduces the difficulty and the computational cost in the mesh generation. And a coarse-grained parallel algorithm can be also constructed, in which the two-dimensional manifold is considered as the computation unit.

Citation: Hao Chen, Kaitai Li, Yuchuan Chu, Zhiqiang Chen, Yiren Yang. A dimension splitting and characteristic projection method for three-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 127-147. doi: 10.3934/dcdsb.2018111
References:
[1]

A. Allievi and R. Bermejo, Finite element modified of characteristics for the Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 32 (2000), 439-463.  doi: 10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y.  Google Scholar

[2]

V. Babu and S. Korpela, Numerical solution of the incompressible three-dimensional Navier-Stokes equations, Comput. Fluids, 22 (1994), 675-691.  doi: 10.1016/0045-7930(94)90009-4.  Google Scholar

[3]

O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids, 27 (1998), 421-433.  doi: 10.1016/S0045-7930(98)00002-4.  Google Scholar

[4]

R. Bouffanais, M. O. Deville and E. Leriche, Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids, 19 (2007), 055108. doi: 10.1063/1.2723153.  Google Scholar

[5]

J. ChanJ. A. Evans and W. Qiu, A dual Petrov-Galerkin finite element method for the convection-diffusion equation, Comput. Math. Appl., 68 (2014), 1513-1529.  doi: 10.1016/j.camwa.2014.07.008.  Google Scholar

[6]

H. ChenK. Li and S. Wang, A dimension split method for the incompressible Navier-Stokes equations in three dimensions, Int. J. Numer. Meth. Fluids, 73 (2013), 409-435.  doi: 10.1002/fld.3803.  Google Scholar

[7]

H. ChenJ. SuK. Li and S. Wang, A characteristic projection method for incompressible thermal flow, Numer. Heat Tr. B-Fund., 65 (2014), 554-590.  doi: 10.1080/10407790.2013.836052.  Google Scholar

[8]

Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Meth. Appl. Mech. Eng., 191 (2002), 2509-2538.  doi: 10.1016/S0045-7825(01)00411-X.  Google Scholar

[9]

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[10]

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23 (1969), 341-353.  doi: 10.1090/S0025-5718-1969-0242393-5.  Google Scholar

[11]

J. Douglas Jr and T. F. Russell, Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element of finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.  doi: 10.1137/0719063.  Google Scholar

[12]

C. J. FreitasR. L. StreetA. N. Findikakis and J. R. Koseff, Numerical simulation of three-dimensional flow in a cavity, Int. J. Numer. Meth. Fluids, 5 (1985), 561-575.  doi: 10.1002/fld.1650050606.  Google Scholar

[13]

C. J. Freitas and R. L. Street, Non-linear transient phenomena in a complex recirculating flow: A numerical investigation, Int. J. Numer. Meth. Fluids, 8 (1988), 769-802.  doi: 10.1002/fld.1650080704.  Google Scholar

[14]

U. GhiaK. N. Ghia and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387-411.  doi: 10.1016/0021-9991(82)90058-4.  Google Scholar

[15]

J. L. GuermondP. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Meth. Appl. Mech. Eng., 195 (2006), 6011-6045.  doi: 10.1016/j.cma.2005.10.010.  Google Scholar

[16]

M. Hermanns, Parallel programming in Fortran 95 using OpenMP, 2002. Available from: http://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf. Google Scholar

[17]

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.  Google Scholar

[18]

J. R. Koseff and R. L. Street, Visualization studies of a shear driven three-dimensional recirculating flow, J. Fluids Eng., 106 (1984), 21-27.  doi: 10.1115/1.3242393.  Google Scholar

[19]

J. R. Koseff and R. L. Street, The lid-driven cavity flow: A synthesis of qualitative and quantitative observations, J. Fluids Eng., 106 (1984), 390-398.  doi: 10.1115/1.3243136.  Google Scholar

[20]

O. A. Ladyzhenskaya, the Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1969.  Google Scholar

[21]

K. LiA. Huang and W. Zhang, A dimension split method for the 3-d compressible Navier-Stokes equations in turbomachine, Commun. Numer. Meth. Eng., 18 (2002), 1-14.   Google Scholar

[22]

K. W. Morton, A. Priestley and E. Süli, Convergence Analysis of the Lagrange-Galerkin Method with Non-Exact Integration, Technical report, Oxford University Computing Laboratory. Rept. N86/14, Oxford, 1986. Google Scholar

[23]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994.  Google Scholar

[24]

C. ShuX. D. Niu and Y. T. Chew, Taylor series expansion and least squares-based lattice boltzmann method: three-dimensional formulation and its applications, Int. J. Mod. Phys. C, 14 (2003), 925-944.  doi: 10.1142/S0129183103005133.  Google Scholar

[25]

E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988), 459-483.  doi: 10.1007/BF01396329.  Google Scholar

[26]

R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la ḿethode des fractionnarires Ⅱ, Arch. Rational Mech. Anal., 33 (1969), 377-385.   Google Scholar

[27]

C. Wu, A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types, Tech. Notes. Nat. Adv. Comm. Aeronaut., 1952 (1952), ⅱ+93 pp.  Google Scholar

[28]

P. X. Yu and Z. F. Tian, A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier-Stokes equations, Comput. Math. Appl., 66 (2013), 1192-1212.  doi: 10.1016/j.camwa.2013.07.013.  Google Scholar

[29]

O. C. Zienkiewicz, P. Nithiarasu and R. L. Taylor, the Finite Element Method for Fluid Dynamics, seventh ed., Elsevier/Butterworth Heinemann, Amsterdam, 2014.  Google Scholar

show all references

References:
[1]

A. Allievi and R. Bermejo, Finite element modified of characteristics for the Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 32 (2000), 439-463.  doi: 10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y.  Google Scholar

[2]

V. Babu and S. Korpela, Numerical solution of the incompressible three-dimensional Navier-Stokes equations, Comput. Fluids, 22 (1994), 675-691.  doi: 10.1016/0045-7930(94)90009-4.  Google Scholar

[3]

O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids, 27 (1998), 421-433.  doi: 10.1016/S0045-7930(98)00002-4.  Google Scholar

[4]

R. Bouffanais, M. O. Deville and E. Leriche, Large-eddy simulation of the flow in a lid-driven cubical cavity, Phys. Fluids, 19 (2007), 055108. doi: 10.1063/1.2723153.  Google Scholar

[5]

J. ChanJ. A. Evans and W. Qiu, A dual Petrov-Galerkin finite element method for the convection-diffusion equation, Comput. Math. Appl., 68 (2014), 1513-1529.  doi: 10.1016/j.camwa.2014.07.008.  Google Scholar

[6]

H. ChenK. Li and S. Wang, A dimension split method for the incompressible Navier-Stokes equations in three dimensions, Int. J. Numer. Meth. Fluids, 73 (2013), 409-435.  doi: 10.1002/fld.3803.  Google Scholar

[7]

H. ChenJ. SuK. Li and S. Wang, A characteristic projection method for incompressible thermal flow, Numer. Heat Tr. B-Fund., 65 (2014), 554-590.  doi: 10.1080/10407790.2013.836052.  Google Scholar

[8]

Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Meth. Appl. Mech. Eng., 191 (2002), 2509-2538.  doi: 10.1016/S0045-7825(01)00411-X.  Google Scholar

[9]

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), 745-762.  doi: 10.1090/S0025-5718-1968-0242392-2.  Google Scholar

[10]

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23 (1969), 341-353.  doi: 10.1090/S0025-5718-1969-0242393-5.  Google Scholar

[11]

J. Douglas Jr and T. F. Russell, Numerical method for convection-dominated diffusion problem based on combining the method of characteristics with finite element of finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.  doi: 10.1137/0719063.  Google Scholar

[12]

C. J. FreitasR. L. StreetA. N. Findikakis and J. R. Koseff, Numerical simulation of three-dimensional flow in a cavity, Int. J. Numer. Meth. Fluids, 5 (1985), 561-575.  doi: 10.1002/fld.1650050606.  Google Scholar

[13]

C. J. Freitas and R. L. Street, Non-linear transient phenomena in a complex recirculating flow: A numerical investigation, Int. J. Numer. Meth. Fluids, 8 (1988), 769-802.  doi: 10.1002/fld.1650080704.  Google Scholar

[14]

U. GhiaK. N. Ghia and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387-411.  doi: 10.1016/0021-9991(82)90058-4.  Google Scholar

[15]

J. L. GuermondP. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Meth. Appl. Mech. Eng., 195 (2006), 6011-6045.  doi: 10.1016/j.cma.2005.10.010.  Google Scholar

[16]

M. Hermanns, Parallel programming in Fortran 95 using OpenMP, 2002. Available from: http://www.openmp.org/wp-content/uploads/F95_OpenMPv1_v2.pdf. Google Scholar

[17]

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.  Google Scholar

[18]

J. R. Koseff and R. L. Street, Visualization studies of a shear driven three-dimensional recirculating flow, J. Fluids Eng., 106 (1984), 21-27.  doi: 10.1115/1.3242393.  Google Scholar

[19]

J. R. Koseff and R. L. Street, The lid-driven cavity flow: A synthesis of qualitative and quantitative observations, J. Fluids Eng., 106 (1984), 390-398.  doi: 10.1115/1.3243136.  Google Scholar

[20]

O. A. Ladyzhenskaya, the Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1969.  Google Scholar

[21]

K. LiA. Huang and W. Zhang, A dimension split method for the 3-d compressible Navier-Stokes equations in turbomachine, Commun. Numer. Meth. Eng., 18 (2002), 1-14.   Google Scholar

[22]

K. W. Morton, A. Priestley and E. Süli, Convergence Analysis of the Lagrange-Galerkin Method with Non-Exact Integration, Technical report, Oxford University Computing Laboratory. Rept. N86/14, Oxford, 1986. Google Scholar

[23]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994.  Google Scholar

[24]

C. ShuX. D. Niu and Y. T. Chew, Taylor series expansion and least squares-based lattice boltzmann method: three-dimensional formulation and its applications, Int. J. Mod. Phys. C, 14 (2003), 925-944.  doi: 10.1142/S0129183103005133.  Google Scholar

[25]

E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations, Numer. Math., 53 (1988), 459-483.  doi: 10.1007/BF01396329.  Google Scholar

[26]

R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la ḿethode des fractionnarires Ⅱ, Arch. Rational Mech. Anal., 33 (1969), 377-385.   Google Scholar

[27]

C. Wu, A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types, Tech. Notes. Nat. Adv. Comm. Aeronaut., 1952 (1952), ⅱ+93 pp.  Google Scholar

[28]

P. X. Yu and Z. F. Tian, A compact streamfunction-velocity scheme on nonuniform grids for the 2D steady incompressible Navier-Stokes equations, Comput. Math. Appl., 66 (2013), 1192-1212.  doi: 10.1016/j.camwa.2013.07.013.  Google Scholar

[29]

O. C. Zienkiewicz, P. Nithiarasu and R. L. Taylor, the Finite Element Method for Fluid Dynamics, seventh ed., Elsevier/Butterworth Heinemann, Amsterdam, 2014.  Google Scholar

Figure 1.  Splitting the flow domain $\Omega$
Figure 2.  Grid structure of two-dimensional manifold $D$
Figure 3.  Sketch of three-dimensional lid-driven cavity flow
Figure 4.  Velocity profiles on middle plane z = 0.5 for Re = 100
Figure 5.  Velocity profiles on middle plane z = 0.5 for Re = 400
Figure 6.  Velocity profiles on middle plane z = 0.5 for Re = 1000
Figure 7.  Streamline profile for various Reynolds numbers: Re = 100(A, B, C); Re = 400(D, E, F); x = 0.5(A, D); z = 0.5(B, E); y = 0.5(C, F)
Figure 8.  Streamline profile for various Reynolds numbers: Re = 1000(A, B, C); Re = 2000(D, E, F); x = 0.5(A, D); z = 0.5(B, E); y = 0.5(C, F)
Figure 9.  Three dimensional streamline for different Reynolds numbers: Re = 100(A, B, C); Re = 400(D, E, F)
Figure 10.  Three dimensional streamline for different Reynolds numbers: Re = 1000(A, B, C); Re = 2000(D, E, F)
Table 1.  Error of numerical solution with different mesh sizes
$\frac{1}{h}$$\|\vec u-\vec u_h\|_{L^2}$$\alpha$$\|p-p_h\|_{L^2}$$\alpha$$\kappa_{div}$
$4$1.149E-002-2.931E-001-4.741E-002
$8$3.513E-0031.7101.394E-0011.0726.953E-003
$16$8.765E-0041.8566.172E-0021.1242.304E-003
$32$1.927E-0041.9661.961E-0021.3013.826E-004
$\frac{1}{h}$$\|\vec u-\vec u_h\|_{L^2}$$\alpha$$\|p-p_h\|_{L^2}$$\alpha$$\kappa_{div}$
$4$1.149E-002-2.931E-001-4.741E-002
$8$3.513E-0031.7101.394E-0011.0726.953E-003
$16$8.765E-0041.8566.172E-0021.1242.304E-003
$32$1.927E-0041.9661.961E-0021.3013.826E-004
Table 2.  Convergence rate with different mesh sizes
$\frac{1}{h}$DSM-CDSM-D
$U_{L^2}$ rate$P_{L^2}$ rateCPU(s)$U_{L^2}$ rate$P_{L^2}$ rateCPU(s)
4--44.5--43.7
81.7101.072138.71.420.876162.4
161.8561.124206.31.491.075383.2
321.9661.301957.61.530.9711996.3
$\frac{1}{h}$DSM-CDSM-D
$U_{L^2}$ rate$P_{L^2}$ rateCPU(s)$U_{L^2}$ rate$P_{L^2}$ rateCPU(s)
4--44.5--43.7
81.7101.072138.71.420.876162.4
161.8561.124206.31.491.075383.2
321.9661.301957.61.530.9711996.3
Table 3.  Parallel performance of DSM-C at $1/h = 8, 16$
$p$ $1/h=8$ $1/h=16$
$T_p$$S_{p}$$E_{p}$ $T_p$$S_{p}$$E_{p}$
152.35--451.69--
237.931.380.69303.141.490.75
421.632.420.61170.442.650.66
616.723.130.52123.073.670.61
815.173.450.43102.424.410.55
1015.313.420.3491.814.920.49
1222.762.300.1994.104.800.40
$p$ $1/h=8$ $1/h=16$
$T_p$$S_{p}$$E_{p}$ $T_p$$S_{p}$$E_{p}$
152.35--451.69--
237.931.380.69303.141.490.75
421.632.420.61170.442.650.66
616.723.130.52123.073.670.61
815.173.450.43102.424.410.55
1015.313.420.3491.814.920.49
1222.762.300.1994.104.800.40
Table 4.  Parallel performance of DSM-C at $1/h = 32, 64$
$p$$1/h=32$$1/h=64$
$T_p$$S_{p}$$E_{p}$$T_P$$S_{p}$$E_{p}$
13847.32--32861.04--
22171.171.770.8917077.321.920.96
41183.793.250.819225.063.560.89
6875.914.390.736744.554.870.81
8717.345.360.675402.696.080.76
10648.785.930.594627.377.100.71
12616.416.240.524147.197.920.66
$p$$1/h=32$$1/h=64$
$T_p$$S_{p}$$E_{p}$$T_P$$S_{p}$$E_{p}$
13847.32--32861.04--
22171.171.770.8917077.321.920.96
41183.793.250.819225.063.560.89
6875.914.390.736744.554.870.81
8717.345.360.675402.696.080.76
10648.785.930.594627.377.100.71
12616.416.240.524147.197.920.66
[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[5]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[6]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[9]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[10]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[16]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (115)
  • HTML views (633)
  • Cited by (0)

[Back to Top]