November  2018, 23(9): 3879-3899. doi: 10.3934/dcdsb.2018115

On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals

1. 

NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China

2. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: W. Wang

Received  April 2017 Revised  December 2017 Published  April 2018

Fund Project: Y. Liu is supported by NSF of China under Grant 11601334. W. Wang is supported by NSF of China under Grant 11501502 and "the Fundamental Research Funds for the Central Universities" 2016QNA3004

This work is concerned with the solvability of a Navier-Stokes/Q-tensor coupled system modeling the nematic liquid crystal flow on a bounded domain in three dimensional Euclidian space with strong anchoring boundary condition for the order parameter. We prove the existence and uniqueness of local in time strong solutions to the system with an anisotropic elastic energy. The proof is based on mainly two ingredients: first, we show that the Euler-Lagrange operator corresponding to the Landau-de Gennes free energy with general elastic coefficients fulfills the strong Legendre condition. This result together with a higher order energy estimate leads to the well-posedness of the linearized system, and then a local in time solution of the original system which is regular in temporal variable follows via a fixed point argument. Secondly, the hydrodynamic part of the coupled system can be reformulated into a quasi-stationary Stokes type equation to which the regularity theory of the generalized Stokes system, and then a bootstrap argument can be applied to enhance the spatial regularity of the local in time solution.

Citation: Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115
References:
[1]

H. AbelsG. Dolzmann and Y. Liu, Well-posedness of a fully coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050-3077. doi: 10.1137/130945405. Google Scholar

[2]

H. AbelsG. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous dirichlet boundary conditions, Advances in Differential Equations, 21 (2016), 109-152. Google Scholar

[3]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Comm. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104. Google Scholar

[4]

J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Molecular Crystals and Liquid Crystals, 525 (2010), 1-11. Google Scholar

[5]

P. BaumanJ. Park and D. Phillips, Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., 205 (2012), 795-826. doi: 10.1007/s00205-012-0530-7. Google Scholar

[6]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems, volume 36 of The Oxford Engineering Sciences Series. Oxford University Press, 1994. Google Scholar

[7]

Y. Y. CaiJ. Shen and X. Xu, A stable scheme and its convergence analysis for a 2D dynamic Qtensor model of nematic liquid crystals, Math. Models Methods Appl. Sci., 27 (2017), 1459-1488. doi: 10.1142/S0218202517500245. Google Scholar

[8]

C. CavaterraE. RoccaH. Wu and X. Xu, Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions, SIAM J. Math. Anal., 48 (2016), 1368-1399. doi: 10.1137/15M1048550. Google Scholar

[9]

X. Chen and X. Xu, Existence and uniqueness of global classical solutions of a gradient flow of the Landau-de Gennes energy, Proceedings of the American Mathematical Society, 144 (2016), 1251-1263. Google Scholar

[10]

Y. -Z. Chen and L. -C. Wu, Second Order Elliptic Equations and Elliptic Systems, volume 174 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. Translated from the 1991 Chinese original by Bei Hu. Google Scholar

[11]

M. DaiE. FeireislE. RoccaG. Schimperna and M. Schonbek, On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptotic Analysis, 97 (2016), 189-210. doi: 10.3233/ASY-151348. Google Scholar

[12]

F. De Anna, A global 2D well-posedness result on the order tensor liquid crystal theory, J. Differential Equations, 262 (2017), 3932-3979. doi: 10.1016/j.jde.2016.12.006. Google Scholar

[13]

F. De Anna and A. Zarnescu, Uniqueness of weak solutions of the full coupled Navier-Stokes and Q-tensor system in 2D, Commun. Math. Sci., 14 (2016), 2127-2178. doi: 10.4310/CMS.2016.v14.n8.a3. Google Scholar

[14]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics. Oxford University Press, Incorporated, 2nd edition, 1995.Google Scholar

[15]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317-343. doi: 10.4310/CMS.2014.v12.n2.a6. Google Scholar

[16]

E. FeireislG. SchimpernaE. Rocca and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Annali di Matematica Pura ed Applicata (1923-), 194 (2015), 1269-1299. doi: 10.1007/s10231-014-0419-1. Google Scholar

[17]

F. Guillén-González and M. Ángeles RodrÍguez-Bellido, Weak time regularity and uniqueness for a Q-tensor model, SIAM J. Math. Anal., 46 (2014), 3540-3567. doi: 10.1137/13095015X. Google Scholar

[18]

F. Guillén-González and M. Á. Rodríguez-Bellido, Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals, Nonlinear Analysis: Theory, Methods & Applications, 112 (2015), 84-104. doi: 10.1016/j.na.2014.09.011. Google Scholar

[19]

J. Huang and S. Ding, Global well-posedness for the dynamical Q-tensor model of liquid crystals, Sci. China Math., 58 (2015), 1349-1366. doi: 10.1007/s11425-015-4990-8. Google Scholar

[20]

G. IyerX. Xu and A. D. Zarnescu, Dynamic cubic instability in a 2D Q-tensor model for liquid crystals, Math. Models Methods Appl. Sci., 25 (2015), 1477-1517. doi: 10.1142/S0218202515500396. Google Scholar

[21]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049. doi: 10.1137/10079224X. Google Scholar

[22]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67. doi: 10.1007/s00205-011-0443-x. Google Scholar

[23]

H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser Verlag, Basel, 2001. Google Scholar

[24]

V. A. Solonnikov, Lp-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain, J. Math. Sci. (New York), 105 (2001), 2448-2484. Function theory and partial differential equations. doi: 10.1023/A:1011321430954. Google Scholar

[25]

W. WangP. Zhang and Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), 127-158. doi: 10.1137/13093529X. Google Scholar

[26]

M. Wilkinson, Strictly physical global weak solutions of a Navier-Stokes Q-tensor system with singular potential, Arch. Ration. Mech. Anal., 218 (2015), 487-526. doi: 10.1007/s00205-015-0864-z. Google Scholar

[27]

J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. Google Scholar

show all references

References:
[1]

H. AbelsG. Dolzmann and Y. Liu, Well-posedness of a fully coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050-3077. doi: 10.1137/130945405. Google Scholar

[2]

H. AbelsG. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous dirichlet boundary conditions, Advances in Differential Equations, 21 (2016), 109-152. Google Scholar

[3]

S. AgmonA. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅱ, Comm. Pure Appl. Math., 17 (1964), 35-92. doi: 10.1002/cpa.3160170104. Google Scholar

[4]

J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Molecular Crystals and Liquid Crystals, 525 (2010), 1-11. Google Scholar

[5]

P. BaumanJ. Park and D. Phillips, Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., 205 (2012), 795-826. doi: 10.1007/s00205-012-0530-7. Google Scholar

[6]

A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems, volume 36 of The Oxford Engineering Sciences Series. Oxford University Press, 1994. Google Scholar

[7]

Y. Y. CaiJ. Shen and X. Xu, A stable scheme and its convergence analysis for a 2D dynamic Qtensor model of nematic liquid crystals, Math. Models Methods Appl. Sci., 27 (2017), 1459-1488. doi: 10.1142/S0218202517500245. Google Scholar

[8]

C. CavaterraE. RoccaH. Wu and X. Xu, Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions, SIAM J. Math. Anal., 48 (2016), 1368-1399. doi: 10.1137/15M1048550. Google Scholar

[9]

X. Chen and X. Xu, Existence and uniqueness of global classical solutions of a gradient flow of the Landau-de Gennes energy, Proceedings of the American Mathematical Society, 144 (2016), 1251-1263. Google Scholar

[10]

Y. -Z. Chen and L. -C. Wu, Second Order Elliptic Equations and Elliptic Systems, volume 174 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. Translated from the 1991 Chinese original by Bei Hu. Google Scholar

[11]

M. DaiE. FeireislE. RoccaG. Schimperna and M. Schonbek, On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptotic Analysis, 97 (2016), 189-210. doi: 10.3233/ASY-151348. Google Scholar

[12]

F. De Anna, A global 2D well-posedness result on the order tensor liquid crystal theory, J. Differential Equations, 262 (2017), 3932-3979. doi: 10.1016/j.jde.2016.12.006. Google Scholar

[13]

F. De Anna and A. Zarnescu, Uniqueness of weak solutions of the full coupled Navier-Stokes and Q-tensor system in 2D, Commun. Math. Sci., 14 (2016), 2127-2178. doi: 10.4310/CMS.2016.v14.n8.a3. Google Scholar

[14]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, International Series of Monographs on Physics. Oxford University Press, Incorporated, 2nd edition, 1995.Google Scholar

[15]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Comm. Math. Sci., 12 (2014), 317-343. doi: 10.4310/CMS.2014.v12.n2.a6. Google Scholar

[16]

E. FeireislG. SchimpernaE. Rocca and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Annali di Matematica Pura ed Applicata (1923-), 194 (2015), 1269-1299. doi: 10.1007/s10231-014-0419-1. Google Scholar

[17]

F. Guillén-González and M. Ángeles RodrÍguez-Bellido, Weak time regularity and uniqueness for a Q-tensor model, SIAM J. Math. Anal., 46 (2014), 3540-3567. doi: 10.1137/13095015X. Google Scholar

[18]

F. Guillén-González and M. Á. Rodríguez-Bellido, Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals, Nonlinear Analysis: Theory, Methods & Applications, 112 (2015), 84-104. doi: 10.1016/j.na.2014.09.011. Google Scholar

[19]

J. Huang and S. Ding, Global well-posedness for the dynamical Q-tensor model of liquid crystals, Sci. China Math., 58 (2015), 1349-1366. doi: 10.1007/s11425-015-4990-8. Google Scholar

[20]

G. IyerX. Xu and A. D. Zarnescu, Dynamic cubic instability in a 2D Q-tensor model for liquid crystals, Math. Models Methods Appl. Sci., 25 (2015), 1477-1517. doi: 10.1142/S0218202515500396. Google Scholar

[21]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049. doi: 10.1137/10079224X. Google Scholar

[22]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67. doi: 10.1007/s00205-011-0443-x. Google Scholar

[23]

H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser Verlag, Basel, 2001. Google Scholar

[24]

V. A. Solonnikov, Lp-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain, J. Math. Sci. (New York), 105 (2001), 2448-2484. Function theory and partial differential equations. doi: 10.1023/A:1011321430954. Google Scholar

[25]

W. WangP. Zhang and Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), 127-158. doi: 10.1137/13093529X. Google Scholar

[26]

M. Wilkinson, Strictly physical global weak solutions of a Navier-Stokes Q-tensor system with singular potential, Arch. Ration. Mech. Anal., 218 (2015), 487-526. doi: 10.1007/s00205-015-0864-z. Google Scholar

[27]

J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987. Translated from the German by C. B. Thomas and M. J. Thomas. Google Scholar

[1]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[2]

M. Carme Calderer, Carlos A. Garavito Garzón, Baisheng Yan. A Landau--de Gennes theory of liquid crystal elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 283-302. doi: 10.3934/dcdss.2015.8.283

[3]

Sirui Li, Wei Wang, Pingwen Zhang. Local well-posedness and small Deborah limit of a molecule-based $Q$-tensor system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2611-2655. doi: 10.3934/dcdsb.2015.20.2611

[4]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[5]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[6]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[7]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[8]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[9]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[10]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[11]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[12]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[13]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[14]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[15]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[16]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[17]

Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks & Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601

[18]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[19]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[20]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (53)
  • HTML views (388)
  • Cited by (0)

Other articles
by authors

[Back to Top]