November  2018, 23(9): 3915-3934. doi: 10.3934/dcdsb.2018117

Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives

a). 

College of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

b). 

Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK

The author is grateful to the Tianjin Thousand Talents Plan for its financial support.

Received  April 2017 Published  November 2018 Early access  April 2018

In this work, we shall consider the existence and uniqueness of stationary solutions to stochastic partial functional differential equations with additive noise in which a neutral type of delay is explicitly presented. We are especially concerned about those delays appearing in both spatial and temporal derivative terms in which the coefficient operator under spatial variables may take the same form as the infinitesimal generator of the equation. We establish the stationary property of the neutral system under investigation by focusing on distributed delays. In the end, an illustrative example is analyzed to explain the theory in this work.

Citation: Kai Liu. Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3915-3934. doi: 10.3934/dcdsb.2018117
References:
[1]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Math., A. K. Peters, Wellesley, Massachusetts, 2005.  Google Scholar

[2]

E. B. Davies, One Parameter Semigroups, Academic Press, New York, 1980.  Google Scholar

[3]

G. Di BlasioK. Kunisch and E. Sinestrari, $ L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.  Google Scholar

[4]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.  Google Scholar

[5]

J. Hale and S. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, New York, Springer-Verlag, Heidelberg/Berlin, 1993. Google Scholar

[6]

K. Ito and T. Tarn, A linear quadratic optimal control for neutral systems, Nonlinear Anal. TMA., 9 (1985), 699-727.  doi: 10.1016/0362-546X(85)90013-6.  Google Scholar

[7]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert spaces, Osaka J. Math., 28 (1991), 347-365.   Google Scholar

[8]

J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Springer-Verlag, Berlin, New York, 1972.  Google Scholar

[9]

K. Liu, Uniform $ L^2$-stability in mean square of linear autonomous stochastic functional differential equations in Hilbert spaces, Stoch. Proc. Appl., 115 (2005), 1131-1165.  doi: 10.1016/j.spa.2005.02.006.  Google Scholar

[10]

K. Liu, On stationarity of stochastic retarded linear equations with unbounded drift operators, Stoch. Anal. Appl., 34 (2016), 547-572.   Google Scholar

[11]

K. Liu, Norm continuity of solution semigroups of a class of neutral functional differential equations with distributed delay, Applied. Math. Letters., 69 (2017), 35-41.  doi: 10.1016/j.aml.2017.01.010.  Google Scholar

[12]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer-Verlag, New York, 2007.  Google Scholar

[13]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.  Google Scholar

[14]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Dekker, New York, 1997.  Google Scholar

show all references

The author is grateful to the Tianjin Thousand Talents Plan for its financial support.

References:
[1]

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Math., A. K. Peters, Wellesley, Massachusetts, 2005.  Google Scholar

[2]

E. B. Davies, One Parameter Semigroups, Academic Press, New York, 1980.  Google Scholar

[3]

G. Di BlasioK. Kunisch and E. Sinestrari, $ L^2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102 (1984), 38-57.  doi: 10.1016/0022-247X(84)90200-2.  Google Scholar

[4]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.  Google Scholar

[5]

J. Hale and S. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, New York, Springer-Verlag, Heidelberg/Berlin, 1993. Google Scholar

[6]

K. Ito and T. Tarn, A linear quadratic optimal control for neutral systems, Nonlinear Anal. TMA., 9 (1985), 699-727.  doi: 10.1016/0362-546X(85)90013-6.  Google Scholar

[7]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert spaces, Osaka J. Math., 28 (1991), 347-365.   Google Scholar

[8]

J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Springer-Verlag, Berlin, New York, 1972.  Google Scholar

[9]

K. Liu, Uniform $ L^2$-stability in mean square of linear autonomous stochastic functional differential equations in Hilbert spaces, Stoch. Proc. Appl., 115 (2005), 1131-1165.  doi: 10.1016/j.spa.2005.02.006.  Google Scholar

[10]

K. Liu, On stationarity of stochastic retarded linear equations with unbounded drift operators, Stoch. Anal. Appl., 34 (2016), 547-572.   Google Scholar

[11]

K. Liu, Norm continuity of solution semigroups of a class of neutral functional differential equations with distributed delay, Applied. Math. Letters., 69 (2017), 35-41.  doi: 10.1016/j.aml.2017.01.010.  Google Scholar

[12]

C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., 1905, Springer-Verlag, New York, 2007.  Google Scholar

[13]

H. Tanabe, Equations of Evolution, Pitman, New York, 1979.  Google Scholar

[14]

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Dekker, New York, 1997.  Google Scholar

[1]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[2]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020096

[3]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[4]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

[5]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[6]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[7]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440

[9]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[10]

Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021044

[11]

Bassam Fayad, Maria Saprykina. Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021129

[12]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[13]

Melvin Faierman. Fredholm theory for an elliptic differential operator defined on $ \mathbb{R}^n $ and acting on generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1463-1483. doi: 10.3934/cpaa.2020074

[14]

Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[17]

Jun Wang, Xing Tao Wang. Sparse signal reconstruction via the approximations of $ \ell_{0} $ quasinorm. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1907-1925. doi: 10.3934/jimo.2019035

[18]

Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021171

[19]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[20]

Chengxiang Wang, Li Zeng, Wei Yu, Liwei Xu. Existence and convergence analysis of $\ell_{0}$ and $\ell_{2}$ regularizations for limited-angle CT reconstruction. Inverse Problems & Imaging, 2018, 12 (3) : 545-572. doi: 10.3934/ipi.2018024

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (146)
  • HTML views (475)
  • Cited by (1)

Other articles
by authors

[Back to Top]