• Previous Article
    Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains
  • DCDS-B Home
  • This Issue
  • Next Article
    Stationary solutions of neutral stochastic partial differential equations with delays in the highest-order derivatives
November  2018, 23(9): 3935-3947. doi: 10.3934/dcdsb.2018118

Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain

Department of Mathematics, Indiana University, Bloomington, IN 47405, USA

Received  May 2017 Revised  October 2017 Published  November 2018 Early access  April 2018

Fund Project: The author is grateful for Professor Shouhong Wang for his advice and suggestions.This research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.

The main objective of this article is to study the dynamic transitions of the FitzHugh-Nagumo equations on a finite domain with the Neumann boundary conditions and with uniformly injected current. We show that when certain parameter conditions are satisfied, the system undergoes a continuous dynamic transition to a limit cycle. A mixed type transition is also found when other conditions are imposed on the parameters. The main method used here is Ma & Wang's dynamic transition theory, which can be used generally on different set-ups for the FitzHugh-Nagumo equations.

Citation: Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118
References:
[1]

R. G. CastenH. Cohen and P. A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quarterly of Applied Mathematics, 32 (1974/75), 365-402. 

[2]

G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35, Springer Science & Business Media, 2010.

[3]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278.  doi: 10.1007/BF02477753.

[4]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.

[5]

S. Hagiwara and Y. Oomura, The critical depolarization for the spike in the squid giant axon, The Japanese Journal of Physiology, 8 (1958), 234-245.  doi: 10.2170/jjphysiol.8.234.

[6]

S. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. (Oxford), 27 (1976), 123-134.  doi: 10.1093/qmath/27.1.123.

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), p500. 

[9]

A. J. Hudspeth, T. M. Jessell, E. R. Kandel, J. H. Schwartz and S. A. Siegelbaum, Principles of Neural Science, 2013.

[10]

C. K. Jones, Stability of the travelling wave solution of the Fitzhugh-Nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.

[11]

M. KrupaB. Sandstede and P. Szmolyan, Fast and slow waves in the Fitzhugh-Nagumo equation, Journal of Differential Equations, 133 (1997), 49-97.  doi: 10.1006/jdeq.1996.3198.

[12]

T. Ma and S. Wang, Attractor bifurcation theory and its applications to Rayleigh-Bénard convection, Commun. Pure Appl. Anal., 2 (2003), 591-599.  doi: 10.3934/cpaa.2003.2.591.

[13]

T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005.

[14]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014.

show all references

References:
[1]

R. G. CastenH. Cohen and P. A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quarterly of Applied Mathematics, 32 (1974/75), 365-402. 

[2]

G. B. Ermentrout and D. H. Terman, Mathematical Foundations of Neuroscience, vol. 35, Springer Science & Business Media, 2010.

[3]

R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, Bulletin of Mathematical Biology, 17 (1955), 257-278.  doi: 10.1007/BF02477753.

[4]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466.  doi: 10.1016/S0006-3495(61)86902-6.

[5]

S. Hagiwara and Y. Oomura, The critical depolarization for the spike in the squid giant axon, The Japanese Journal of Physiology, 8 (1958), 234-245.  doi: 10.2170/jjphysiol.8.234.

[6]

S. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. (Oxford), 27 (1976), 123-134.  doi: 10.1093/qmath/27.1.123.

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[8]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117 (1952), p500. 

[9]

A. J. Hudspeth, T. M. Jessell, E. R. Kandel, J. H. Schwartz and S. A. Siegelbaum, Principles of Neural Science, 2013.

[10]

C. K. Jones, Stability of the travelling wave solution of the Fitzhugh-Nagumo system, Transactions of the American Mathematical Society, 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.

[11]

M. KrupaB. Sandstede and P. Szmolyan, Fast and slow waves in the Fitzhugh-Nagumo equation, Journal of Differential Equations, 133 (1997), 49-97.  doi: 10.1006/jdeq.1996.3198.

[12]

T. Ma and S. Wang, Attractor bifurcation theory and its applications to Rayleigh-Bénard convection, Commun. Pure Appl. Anal., 2 (2003), 591-599.  doi: 10.3934/cpaa.2003.2.591.

[13]

T. Ma and S. Wang, Bifurcation Theory and Applications, vol. 53, World Scientific, 2005.

[14]

T. Ma and S. Wang, Phase Transition Dynamics, Springer, 2014.

[1]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[2]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations and Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[3]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[4]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[5]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[6]

Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251

[7]

Fuzhi Li, Dongmei Xu. Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3517-3542. doi: 10.3934/dcdsb.2020244

[8]

Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397

[9]

Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022063

[10]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations and Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[11]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[12]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[13]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[14]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[15]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[16]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[17]

Jyoti Mishra. Analysis of the Fitzhugh Nagumo model with a new numerical scheme. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 781-795. doi: 10.3934/dcdss.2020044

[18]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[19]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[20]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (233)
  • HTML views (448)
  • Cited by (2)

Other articles
by authors

[Back to Top]