November  2018, 23(9): 4003-4020. doi: 10.3934/dcdsb.2018121

Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

Received  June 2017 Revised  November 2017 Published  April 2018

Fund Project: The work is partially supported by PRC grant NSFC 11771380, 11401515

In this paper, we study the generalized chemotaxis system with fractional Laplacian. The existence and the uniqueness of global classical solution are proved under the assumption that the initial data are small enough. During the proof, with the help of the fixed point theorem, the asymptotic decay behaviors of $ u $ and $ \nabla{v} $ are also shown.

Citation: Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[2]

P. BilerT. Funaki and W. A. Woyczy$ \acute{n} $ski, Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Statist., 19 (1999), 267-286. Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[4]

P. Biler and W. A. Woyczy$ \acute{n} $ski, Global and exploding solutions for nonlocal quardratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869. Google Scholar

[5]

P. Biler and W. A. Woyczy$ \acute{n} $ski, Nonlocal quadratic evolution problems, Banach Center Publ., 52 (2000), 11-24. Google Scholar

[6]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262. doi: 10.1007/s00028-009-0048-0. Google Scholar

[7]

P. Biler, T Cie$ \acute{s} $lak, G. Karch and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, Discrete & Continuous Dynamical Systems - A, 37 (2017), 1841-1856, arXiv: 1410.7870. doi: 10.3934/dcds.2017077. Google Scholar

[8]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. doi: 10.1007/BF02790212. Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $ \mathbb{R}^{n} $, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 745-750. doi: 10.1016/j.crma.2006.03.008. Google Scholar

[10]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005. Google Scholar

[11]

C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918. doi: 10.1088/0951-7715/19/12/010. Google Scholar

[12]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial differential Equations and their Numerical Solutions, Originally published by Science Press in 2011, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of smile mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[14]

D. Li and J.L. Rodrigo, Finite-time singularities of an aggregation equation in $ \mathbb{R}^{n} $ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703. doi: 10.1007/s00220-008-0669-0. Google Scholar

[15]

D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. in Math., 220 (2009), 1717-1738. doi: 10.1016/j.aim.2008.10.016. Google Scholar

[16]

D. LiJ. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoamericana, 26 (2010), 295-332. Google Scholar

[17]

D. Q. Li and Y. M. Chen, Nonlinear Evolution Equation, Science Press, 1999.Google Scholar

[18]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. Google Scholar

[2]

P. BilerT. Funaki and W. A. Woyczy$ \acute{n} $ski, Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Statist., 19 (1999), 267-286. Google Scholar

[3]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[4]

P. Biler and W. A. Woyczy$ \acute{n} $ski, Global and exploding solutions for nonlocal quardratic evolution problems, SIAM J. Appl. Math., 59 (1999), 845-869. Google Scholar

[5]

P. Biler and W. A. Woyczy$ \acute{n} $ski, Nonlocal quadratic evolution problems, Banach Center Publ., 52 (2000), 11-24. Google Scholar

[6]

P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10 (2010), 247-262. doi: 10.1007/s00028-009-0048-0. Google Scholar

[7]

P. Biler, T Cie$ \acute{s} $lak, G. Karch and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, Discrete & Continuous Dynamical Systems - A, 37 (2017), 1841-1856, arXiv: 1410.7870. doi: 10.3934/dcds.2017077. Google Scholar

[8]

H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277-304. doi: 10.1007/BF02790212. Google Scholar

[9]

L. Corrias and B. Perthame, Critical space for the parabolic-parabolic Keller-Segel model in $ \mathbb{R}^{n} $, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 745-750. doi: 10.1016/j.crma.2006.03.008. Google Scholar

[10]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005. Google Scholar

[11]

C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918. doi: 10.1088/0951-7715/19/12/010. Google Scholar

[12]

B. L. Guo, X. K. Pu and F. H. Huang, Fractional Partial differential Equations and their Numerical Solutions, Originally published by Science Press in 2011, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. Google Scholar

[13]

E. F. Keller and L. A. Segel, Initiation of smile mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[14]

D. Li and J.L. Rodrigo, Finite-time singularities of an aggregation equation in $ \mathbb{R}^{n} $ with fractional dissipation, Comm. Math. Phys., 287 (2009), 687-703. doi: 10.1007/s00220-008-0669-0. Google Scholar

[15]

D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Adv. in Math., 220 (2009), 1717-1738. doi: 10.1016/j.aim.2008.10.016. Google Scholar

[16]

D. LiJ. L. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoamericana, 26 (2010), 295-332. Google Scholar

[17]

D. Q. Li and Y. M. Chen, Nonlinear Evolution Equation, Science Press, 1999.Google Scholar

[18]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[1]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[2]

Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

[3]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

[4]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[5]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019064

[6]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[7]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[8]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[9]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737

[12]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[13]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[14]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[17]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[18]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[19]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[20]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (91)
  • HTML views (456)
  • Cited by (0)

Other articles
by authors

[Back to Top]