August  2018, 23(6): 2607-2623. doi: 10.3934/dcdsb.2018123

Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems

1. 

School of Mathematics, Jilin University, Changchun 130012, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

3. 

Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China

4. 

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

5. 

College of mathematics, Jilin Normal University, Jilin 136000, China

* Corresponding author: Yong Li

Received  June 2017 Revised  October 2017 Published  April 2018

Fund Project: The first author is supported by National Basic Research Program of China (grant No. 2013CB834100), NSFC (grant No. 11571065) and NSFC (grant No. 11171132).The third author is supported by NSFC (grant No. 11201173)

This paper concerns the existence of affine-periodic solutions for differential systems (including functional differential equations) and Newtonian systems with friction. This is a kind of pattern solutions in time-space, which may be periodic, anti-periodic, subharmonic or quasi periodic corresponding to rotation motions. Fink type conjecture is verified and Lyapunov's methods are given. These results are applied to study gradient systems and Newtonian (including Rayleigh or Lienard) systems. Levinson's conjecture to Newtonian systems is proved.

Citation: Yong Li, Hongren Wang, Xue Yang. Fink type conjecture on affine-periodic solutions and Levinson's conjecture to Newtonian systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2607-2623. doi: 10.3934/dcdsb.2018123
References:
[1]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. Google Scholar

[2]

J.-M. Belley and É Bondo, Anti-periodic solutions of Liénard equations with state dependent impulses, J. Differential Equations, 261 (2016), 4164-4187. doi: 10.1016/j.jde.2016.06.020. Google Scholar

[3]

T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations, Mathematics in Science and Engineering, 178. Academic Press, Inc., Orlando, FL, 1985. Google Scholar

[4]

T. A. Burton and B. Zhang, Uniform ultimate boundedness and periodicity in functional-differential equations, Tohoku Math. J.(2), 42 (1990), 93-100. doi: 10.2748/tmj/1178227696. Google Scholar

[5]

T. A. Burton and S. Zhang, Unified boundedness, periodicity, and stability in ordinary and functional-differential equations, Ann. Mat. Pura Appl.(4), 145 (1986), 129-158. doi: 10.1007/BF01790540. Google Scholar

[6]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 643-652. doi: 10.3934/dcds.2016.36.643. Google Scholar

[7]

J. Chu and F. Wang, Prevalence of stable periodic solutions for Duffing equations, J. Differential Equations, 260 (2016), 7800-7820. doi: 10.1016/j.jde.2016.02.003. Google Scholar

[8]

F. CongT. KüpperY. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonlinear Sci., 10 (2000), 49-68. doi: 10.1007/s003329910003. Google Scholar

[9]

A. M. Fink, Convergence and almost periodicity of solutions of forced lienard equation, SIAM. J. Appl. Math., 26 (1974), 26-34. doi: 10.1137/0126004. Google Scholar

[10]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. Google Scholar

[11]

T. KüpperY. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J.(2), 52 (2000), 321-329. doi: 10.2748/tmj/1178207816. Google Scholar

[12]

N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math.(2), 45 (1944), 723-737. doi: 10.2307/1969299. Google Scholar

[13]

Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 15 (2015), 241-252. doi: 10.1515/ans-2015-0113. Google Scholar

[14]

Y. Li and Y. Yi, A quasi-periodic Poincaré's theorem, Math. Ann., 326 (2003), 649-690. doi: 10.1007/s00208-002-0399-0. Google Scholar

[15]

F. Lin, Uniformly asymptotic stability and existence of periodic solutions and almost periodic solutions, Sci. China Ser. A, 37 (1994), 933-945. Google Scholar

[16]

X. Meng and Y. Li, Affine-periodic solutions for discrete dynamical systems, J. Appl. Anal. Comput., 5 (2015), 781-792. Google Scholar

[17]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1962 (1962), 1-20. Google Scholar

[18]

C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales Adv. Difference Equ., 2015 (2015), 16 pp. doi: 10.1186/s13662-015-0634-0. Google Scholar

[19]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 46 (2016), 1717-1737. doi: 10.1216/RMJ-2016-46-5-1717. Google Scholar

[20]

H. WangX. YangY. Li and X. Li, LaSalle type stationary oscillation theorems for affine-periodic systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2907-2921. doi: 10.3934/dcdsb.2017156. Google Scholar

[21]

J. XingX. Yang and Y. Li, Affine-periodic solutions by averaging methods, Sci. China Math., 61 (2018), 439-452. doi: 10.1007/s11425-016-0455-1. Google Scholar

[22]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Mathematical Sciences, Vol. 14. Springer-Verlag, New York-Heidelberg, 1975. Google Scholar

[23]

P. Zabreiko and M. Krasnosel'skii, Iteration of operators and fixed points, Dokl. Akad. Nauk SSSR, 196 (1971), 1006-1009. Google Scholar

[24]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal., (2013), Art. ID 157140, 4 pp. Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. Google Scholar

[2]

J.-M. Belley and É Bondo, Anti-periodic solutions of Liénard equations with state dependent impulses, J. Differential Equations, 261 (2016), 4164-4187. doi: 10.1016/j.jde.2016.06.020. Google Scholar

[3]

T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations, Mathematics in Science and Engineering, 178. Academic Press, Inc., Orlando, FL, 1985. Google Scholar

[4]

T. A. Burton and B. Zhang, Uniform ultimate boundedness and periodicity in functional-differential equations, Tohoku Math. J.(2), 42 (1990), 93-100. doi: 10.2748/tmj/1178227696. Google Scholar

[5]

T. A. Burton and S. Zhang, Unified boundedness, periodicity, and stability in ordinary and functional-differential equations, Ann. Mat. Pura Appl.(4), 145 (1986), 129-158. doi: 10.1007/BF01790540. Google Scholar

[6]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 643-652. doi: 10.3934/dcds.2016.36.643. Google Scholar

[7]

J. Chu and F. Wang, Prevalence of stable periodic solutions for Duffing equations, J. Differential Equations, 260 (2016), 7800-7820. doi: 10.1016/j.jde.2016.02.003. Google Scholar

[8]

F. CongT. KüpperY. Li and J. You, KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems, J. Nonlinear Sci., 10 (2000), 49-68. doi: 10.1007/s003329910003. Google Scholar

[9]

A. M. Fink, Convergence and almost periodicity of solutions of forced lienard equation, SIAM. J. Appl. Math., 26 (1974), 26-34. doi: 10.1137/0126004. Google Scholar

[10]

A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527-530. Google Scholar

[11]

T. KüpperY. Li and B. Zhang, Periodic solutions for dissipative-repulsive systems, Tohoku Math. J.(2), 52 (2000), 321-329. doi: 10.2748/tmj/1178207816. Google Scholar

[12]

N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math.(2), 45 (1944), 723-737. doi: 10.2307/1969299. Google Scholar

[13]

Y. Li and F. Huang, Levinson's problem on affine-periodic solutions, Adv. Nonlinear Stud., 15 (2015), 241-252. doi: 10.1515/ans-2015-0113. Google Scholar

[14]

Y. Li and Y. Yi, A quasi-periodic Poincaré's theorem, Math. Ann., 326 (2003), 649-690. doi: 10.1007/s00208-002-0399-0. Google Scholar

[15]

F. Lin, Uniformly asymptotic stability and existence of periodic solutions and almost periodic solutions, Sci. China Ser. A, 37 (1994), 933-945. Google Scholar

[16]

X. Meng and Y. Li, Affine-periodic solutions for discrete dynamical systems, J. Appl. Anal. Comput., 5 (2015), 781-792. Google Scholar

[17]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1962 (1962), 1-20. Google Scholar

[18]

C. Wang and Y. Li, Affine-periodic solutions for nonlinear dynamic equations on time scales Adv. Difference Equ., 2015 (2015), 16 pp. doi: 10.1186/s13662-015-0634-0. Google Scholar

[19]

C. WangX. Yang and Y. Li, Affine-periodic solutions for nonlinear differential equations, Rocky Mountain J. Math., 46 (2016), 1717-1737. doi: 10.1216/RMJ-2016-46-5-1717. Google Scholar

[20]

H. WangX. YangY. Li and X. Li, LaSalle type stationary oscillation theorems for affine-periodic systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2907-2921. doi: 10.3934/dcdsb.2017156. Google Scholar

[21]

J. XingX. Yang and Y. Li, Affine-periodic solutions by averaging methods, Sci. China Math., 61 (2018), 439-452. doi: 10.1007/s11425-016-0455-1. Google Scholar

[22]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied Mathematical Sciences, Vol. 14. Springer-Verlag, New York-Heidelberg, 1975. Google Scholar

[23]

P. Zabreiko and M. Krasnosel'skii, Iteration of operators and fixed points, Dokl. Akad. Nauk SSSR, 196 (1971), 1006-1009. Google Scholar

[24]

Y. Zhang, X. Yang and Y. Li, Affine-periodic solutions for dissipative systems, Abstr. Appl. Anal., (2013), Art. ID 157140, 4 pp. Google Scholar

[1]

Hongren Wang, Xue Yang, Yong Li, Xiaoyue Li. LaSalle type stationary oscillation theorems for Affine-Periodic Systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2907-2921. doi: 10.3934/dcdsb.2017156

[2]

Uri Shapira. On a generalization of Littlewood's conjecture. Journal of Modern Dynamics, 2009, 3 (3) : 457-477. doi: 10.3934/jmd.2009.3.457

[3]

Yakov Varshavsky. A proof of a generalization of Deligne's conjecture. Electronic Research Announcements, 2005, 11: 78-88.

[4]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[5]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[6]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[7]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[8]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[9]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[10]

Jan Hladký, Diana Piguet, Miklós Simonovits, Maya Stein, Endre Szemerédi. The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs. Electronic Research Announcements, 2015, 22: 1-11. doi: 10.3934/era.2015.22.1

[11]

Emmanuel Hebey. The Lin-Ni's conjecture for vector-valued Schrödinger equations in the closed case. Communications on Pure & Applied Analysis, 2010, 9 (4) : 955-962. doi: 10.3934/cpaa.2010.9.955

[12]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[13]

Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305

[14]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[15]

David Cheban. Belitskii--Lyubich conjecture for $C$-analytic dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 945-959. doi: 10.3934/dcdsb.2015.20.945

[16]

Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301

[17]

Xijun Hu, Penghui Wang. Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 763-784. doi: 10.3934/dcds.2016.36.763

[18]

Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004

[19]

Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333

[20]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (61)
  • HTML views (231)
  • Cited by (0)

Other articles
by authors

[Back to Top]