August  2018, 23(6): 2625-2640. doi: 10.3934/dcdsb.2018124

Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity

1. 

School of Mathematics, Shandong University, Jinan, Shandong 250100, China

2. 

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Yuxiang Zhang

Received  June 2017 Revised  October 2017 Published  April 2018

Fund Project: X. Zhang is partially supported by the NSF of China (No. 11571200,11425105), and Y. Zhang is supported in part by the NSF of China (No. 11701415,11601386)

This work is devoted to study the spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. In the case of the spatial domain is bounded and heterogeneous, we assume some key parameters in the model explicitly depend on spatial location. We first define the basic reproduction number $\mathcal{R}_0$ for the disease transmission, which generalizes the existing definition of $\mathcal{R}_0$ for the system in spatially homogeneous environment. Then we establish a threshold type result for the disease eradication ($\mathcal{R}_0 <1$) or uniform persistence ($\mathcal{R}_0>1)$. In the case of the domain is linear, unbounded, and spatially homogenerous, we further establish the existence of traveling wave solutions and the minimum wave speed $c^*$ for the disease transmission. At the end of this work, we characteristic the minimum wave speed $c^*$ and provide a method for the calculation of $c^*$.

Citation: Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profile of the steady states for an SIS epidemic disease reaction-diffusion model, Dis. Cont. Dyn. Syst., 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[3]

E. Bertuzzo, On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7 (2010), 321-333. doi: 10.1098/rsif.2009.0204.

[4]

M. J. Bouma and M. Pascual, Seasonal and interannual cycles of endemic cholera in Bengal 1891-1940 in relation to climate and geography, Hydrobiologia, 460 (2001), 147-156. doi: 10.1007/978-94-017-3284-0_13.

[5]

F. CaponeC. V. De and L. R. De, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131. doi: 10.1007/s00285-014-0849-9.

[6]

F. CaponeC. V. De and L. R. De, Erratum to: Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1267-1268. doi: 10.1007/s00285-015-0915-y.

[7]

C. T. Codeco, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis, 1 (2001), p1. doi: 10.1186/1471-2334-1-1.

[8]

R. R. Colwell and A. Huq, Environmental reservoir of Vibrio cholerae, the causative agent of cholera, Annals of the New York Academy of Sciences, 740 (1994), 44-54. doi: 10.1111/j.1749-6632.1994.tb19852.x.

[9]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[10]

Z. Du and R. Peng, A priori $L^∞ $ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439. doi: 10.1007/s00285-015-0914-z.

[11]

C. H. Fung, Cholera transmission dynamic models for public health practitioners, Emerging Themes in Epidemiology, 11 (2014), p1. doi: 10.1186/1742-7622-11-1.

[12]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. PDEs, 5 (1980), 999-1030. doi: 10.1080/03605308008820162.

[13]

E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems, IEEE Trans. Automat. Contr., 26 (1981), 444-451. doi: 10.1109/TAC.1981.1102589.

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1976.

[15]

H. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2016), 885-913. doi: 10.1016/j.jde.2016.09.044.

[16]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[17]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[18]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[19]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[20]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.

[21]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[22]

J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math Biosci, 232 (2011), 31-41. doi: 10.1016/j.mbs.2011.04.001.

[23]

X. WangD. Posny and J. Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Dis. Cont. Dyn. Syst. Ser. B, 21 (2016), 2785-2809. doi: 10.3934/dcdsb.2016073.

[24]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[25]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Systems, 11 (2012), 1652-1673. doi: 10.1137/120872942.

[26]

K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.

[27]

T. Zhang, Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations, J. Diff. Equ., 262 (2017), 4724-4770. doi: 10.1016/j.jde.2016.12.017.

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profile of the steady states for an SIS epidemic disease reaction-diffusion model, Dis. Cont. Dyn. Syst., 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[3]

E. Bertuzzo, On spatially explicit models of cholera epidemics, Journal of the Royal Society Interface, 7 (2010), 321-333. doi: 10.1098/rsif.2009.0204.

[4]

M. J. Bouma and M. Pascual, Seasonal and interannual cycles of endemic cholera in Bengal 1891-1940 in relation to climate and geography, Hydrobiologia, 460 (2001), 147-156. doi: 10.1007/978-94-017-3284-0_13.

[5]

F. CaponeC. V. De and L. R. De, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131. doi: 10.1007/s00285-014-0849-9.

[6]

F. CaponeC. V. De and L. R. De, Erratum to: Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1267-1268. doi: 10.1007/s00285-015-0915-y.

[7]

C. T. Codeco, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis, 1 (2001), p1. doi: 10.1186/1471-2334-1-1.

[8]

R. R. Colwell and A. Huq, Environmental reservoir of Vibrio cholerae, the causative agent of cholera, Annals of the New York Academy of Sciences, 740 (1994), 44-54. doi: 10.1111/j.1749-6632.1994.tb19852.x.

[9]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[10]

Z. Du and R. Peng, A priori $L^∞ $ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439. doi: 10.1007/s00285-015-0914-z.

[11]

C. H. Fung, Cholera transmission dynamic models for public health practitioners, Emerging Themes in Epidemiology, 11 (2014), p1. doi: 10.1186/1742-7622-11-1.

[12]

P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. PDEs, 5 (1980), 999-1030. doi: 10.1080/03605308008820162.

[13]

E. I. Jury and M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems, IEEE Trans. Automat. Contr., 26 (1981), 444-451. doi: 10.1109/TAC.1981.1102589.

[14]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, 1976.

[15]

H. LiR. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Diff. Equ., 262 (2016), 885-913. doi: 10.1016/j.jde.2016.09.044.

[16]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[17]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[18]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[19]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[20]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.

[21]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[22]

J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math Biosci, 232 (2011), 31-41. doi: 10.1016/j.mbs.2011.04.001.

[23]

X. WangD. Posny and J. Wang, A reaction-convection-diffusion model for cholera spatial dynamics, Dis. Cont. Dyn. Syst. Ser. B, 21 (2016), 2785-2809. doi: 10.3934/dcdsb.2016073.

[24]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[25]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Systems, 11 (2012), 1652-1673. doi: 10.1137/120872942.

[26]

K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.

[27]

T. Zhang, Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations, J. Diff. Equ., 262 (2017), 4724-4770. doi: 10.1016/j.jde.2016.12.017.

Table 1.  Biological interpretations for parameters in model (2)
SymbolsInterpretations
$N_0$Total population size at time $t=0$
$d_i$Diffusion coefficients for $i=1, 2, 3, 4$
$\mu$Birth/death rate
$\sigma$Recovery rate
$\mu_B$Loss rate of bacteria
$\pi_B$Growth rate of bacteria
$\beta(x)$Contact rate with contaminated water at location $x$
$e(x)$Contribution of each infected person to the population of V. cholerae
SymbolsInterpretations
$N_0$Total population size at time $t=0$
$d_i$Diffusion coefficients for $i=1, 2, 3, 4$
$\mu$Birth/death rate
$\sigma$Recovery rate
$\mu_B$Loss rate of bacteria
$\pi_B$Growth rate of bacteria
$\beta(x)$Contact rate with contaminated water at location $x$
$e(x)$Contribution of each infected person to the population of V. cholerae
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[4]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[5]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[6]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[7]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[8]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[9]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[10]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[11]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[12]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[13]

W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35

[14]

Yu-Xia Wang, Wan-Tong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 19-39. doi: 10.3934/dcds.2019002

[15]

Yuan-Hang Su, Wan-Tong Li, Fei-Ying Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-8. doi: 10.3934/dcdsb.2019038

[16]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[17]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[18]

Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1

[19]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[20]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (98)
  • HTML views (333)
  • Cited by (0)

Other articles
by authors

[Back to Top]