-
Previous Article
Time asymptotics of structured populations with diffusion and dynamic boundary conditions
- DCDS-B Home
- This Issue
- Next Article
Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity
1. | School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710126, China |
2. | School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, China |
A non-local delayed reaction-diffusion model with a quiescent stage is investigated. It is shown that the spreading speed of this model without quasi-monotonicity is linearly determinate and coincides with the minimal wave speed of traveling waves.
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion,
and nerve pulse propagation, in: J. A. Goldstein (Ed. ), Partial Differential Equations and
Related Topics, in: Lecture Notes in Math., vol. 446, Springer-Verlag, 1975, pp. 5–49. |
[2] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[3] |
N. F. Britton,
Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66.
doi: 10.1016/S0022-5193(89)80189-4. |
[4] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[5] |
A. Ducrot,
Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1-15.
doi: 10.1016/j.matpur.2012.10.009. |
[6] |
J. Fang, J. J. Wei and X.-Q. Zhao,
Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934.
doi: 10.1098/rspa.2009.0577. |
[7] |
J. Fang, K. Lan, G. Seo and J. Wu,
Spatial dynamics of an age-structured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), 959-979.
doi: 10.1137/130930273. |
[8] |
K. P. Hadeler, T. Hillen and M. A. Lewis, Biological modeling with quiescent phases, in: C. Cosner, S. Cantrell, S. Ruan (Eds. ),
Spatial Ecology, Taylor and Francis, 2009. (Chapter 5) |
[9] |
K. P. Hadeler and M. A. Lewis,
Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.
|
[10] |
J. K. Hale and S. M. Verduyn Lunel,
Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. |
[11] |
C.-H. Hsu and T.-S. Yang,
Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[12] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[13] |
W. T. Li, S. Ruan and Z. C. Wang,
On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlin. Sci., 17 (2007), 505-525.
doi: 10.1007/s00332-007-9003-9. |
[14] |
B. Li, H. F. Weinberger and M. A. Lewis,
Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008. |
[15] |
X. Liang, Y. Yi and X.-Q. Zhao,
Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.
doi: 10.1016/j.jde.2006.04.010. |
[16] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[17] |
R. Lui,
Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295.
doi: 10.1016/0025-5564(89)90026-6. |
[18] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[19] |
R. H. Martin and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
|
[20] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[21] |
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Traveling Wave Solutions of Parabolic Systems, Translations of mathematical monographs, Province, RI: American Mathematical Society, 1994. |
[22] |
H. Wang,
Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[23] |
H. Wang and C. Castillo-Chavez,
Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2243-2266.
doi: 10.3934/dcdsb.2012.17.2243. |
[24] |
Z. C. Wang, W. T. Li and S. Ruan,
Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.
doi: 10.1016/j.jde.2005.08.010. |
[25] |
H. F. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[26] |
S. L. Wu and C. H. Hsu,
Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.
doi: 10.1017/S0308210512001412. |
[27] |
S. L. Wu, C. H. Hsu and Y. Xiao,
Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[28] |
S. L. Wu and H. Q. Zhao,
Traveling fronts for a delayed reaction-diffusion system with a quiescent stage, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3610-3621.
doi: 10.1016/j.cnsns.2011.01.012. |
[29] |
Z. Xu and D. Xiao,
Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differential Equations, 260 (2016), 268-303.
doi: 10.1016/j.jde.2015.08.049. |
[30] |
X. Yu and X.-Q. Zhao,
A nonlocal spatial model for Lyme disease, J. Differential Equations, 261 (2016), 340-372.
doi: 10.1016/j.jde.2016.03.014. |
[31] |
P. Zhang and W. T. Li,
Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage, Nonlinear Anal., 72 (2010), 2178-2189.
doi: 10.1016/j.na.2009.10.016. |
[32] |
K. F. Zhang and X.-Q. Zhao,
Asymptotic behaviour of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. A, 463 (2007), 1029-1043.
doi: 10.1098/rspa.2006.1806. |
[33] |
X.-Q. Zhao and Z.-J. Jing,
Global asymptotic behavior in some cooperative systems of functional-differential equa-tions, Can. Appl. Math. Q., 4 (1996), 421-444.
|
[34] |
H. Q. Zhao and S. Liu,
Spatial dynamics for a non-quasi-monotone reaction-diffusion system with delay and quiescent stage, Appl. Math. Model., 40 (2016), 4291-4301.
doi: 10.1016/j.apm.2015.11.036. |
[35] |
X.-Q. Zhao and D. Xiao,
The asymptotic speed of spread and traveling waves for a vector disease model, J. Dyn. Differ. Equ., 18 (2006), 1001-1019.
doi: 10.1007/s10884-006-9044-z. |
[36] |
X. -Q. Zhao,
Dynamical Systems in Population Biology, second edition, Springer, New York, 2017. |
show all references
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion,
and nerve pulse propagation, in: J. A. Goldstein (Ed. ), Partial Differential Equations and
Related Topics, in: Lecture Notes in Math., vol. 446, Springer-Verlag, 1975, pp. 5–49. |
[2] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[3] |
N. F. Britton,
Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66.
doi: 10.1016/S0022-5193(89)80189-4. |
[4] |
N. F. Britton,
Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.
doi: 10.1137/0150099. |
[5] |
A. Ducrot,
Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1-15.
doi: 10.1016/j.matpur.2012.10.009. |
[6] |
J. Fang, J. J. Wei and X.-Q. Zhao,
Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934.
doi: 10.1098/rspa.2009.0577. |
[7] |
J. Fang, K. Lan, G. Seo and J. Wu,
Spatial dynamics of an age-structured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), 959-979.
doi: 10.1137/130930273. |
[8] |
K. P. Hadeler, T. Hillen and M. A. Lewis, Biological modeling with quiescent phases, in: C. Cosner, S. Cantrell, S. Ruan (Eds. ),
Spatial Ecology, Taylor and Francis, 2009. (Chapter 5) |
[9] |
K. P. Hadeler and M. A. Lewis,
Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.
|
[10] |
J. K. Hale and S. M. Verduyn Lunel,
Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. |
[11] |
C.-H. Hsu and T.-S. Yang,
Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[12] |
S.-B. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[13] |
W. T. Li, S. Ruan and Z. C. Wang,
On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlin. Sci., 17 (2007), 505-525.
doi: 10.1007/s00332-007-9003-9. |
[14] |
B. Li, H. F. Weinberger and M. A. Lewis,
Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008. |
[15] |
X. Liang, Y. Yi and X.-Q. Zhao,
Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.
doi: 10.1016/j.jde.2006.04.010. |
[16] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[17] |
R. Lui,
Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295.
doi: 10.1016/0025-5564(89)90026-6. |
[18] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[19] |
R. H. Martin and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
|
[20] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[21] |
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Traveling Wave Solutions of Parabolic Systems, Translations of mathematical monographs, Province, RI: American Mathematical Society, 1994. |
[22] |
H. Wang,
Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[23] |
H. Wang and C. Castillo-Chavez,
Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2243-2266.
doi: 10.3934/dcdsb.2012.17.2243. |
[24] |
Z. C. Wang, W. T. Li and S. Ruan,
Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.
doi: 10.1016/j.jde.2005.08.010. |
[25] |
H. F. Weinberger,
Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.
doi: 10.1137/0513028. |
[26] |
S. L. Wu and C. H. Hsu,
Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.
doi: 10.1017/S0308210512001412. |
[27] |
S. L. Wu, C. H. Hsu and Y. Xiao,
Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[28] |
S. L. Wu and H. Q. Zhao,
Traveling fronts for a delayed reaction-diffusion system with a quiescent stage, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3610-3621.
doi: 10.1016/j.cnsns.2011.01.012. |
[29] |
Z. Xu and D. Xiao,
Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differential Equations, 260 (2016), 268-303.
doi: 10.1016/j.jde.2015.08.049. |
[30] |
X. Yu and X.-Q. Zhao,
A nonlocal spatial model for Lyme disease, J. Differential Equations, 261 (2016), 340-372.
doi: 10.1016/j.jde.2016.03.014. |
[31] |
P. Zhang and W. T. Li,
Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage, Nonlinear Anal., 72 (2010), 2178-2189.
doi: 10.1016/j.na.2009.10.016. |
[32] |
K. F. Zhang and X.-Q. Zhao,
Asymptotic behaviour of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. A, 463 (2007), 1029-1043.
doi: 10.1098/rspa.2006.1806. |
[33] |
X.-Q. Zhao and Z.-J. Jing,
Global asymptotic behavior in some cooperative systems of functional-differential equa-tions, Can. Appl. Math. Q., 4 (1996), 421-444.
|
[34] |
H. Q. Zhao and S. Liu,
Spatial dynamics for a non-quasi-monotone reaction-diffusion system with delay and quiescent stage, Appl. Math. Model., 40 (2016), 4291-4301.
doi: 10.1016/j.apm.2015.11.036. |
[35] |
X.-Q. Zhao and D. Xiao,
The asymptotic speed of spread and traveling waves for a vector disease model, J. Dyn. Differ. Equ., 18 (2006), 1001-1019.
doi: 10.1007/s10884-006-9044-z. |
[36] |
X. -Q. Zhao,
Dynamical Systems in Population Biology, second edition, Springer, New York, 2017. |
[1] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[2] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[3] |
Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255 |
[4] |
Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267 |
[5] |
Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145 |
[6] |
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 |
[7] |
Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 |
[8] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769 |
[9] |
Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843 |
[10] |
Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021265 |
[11] |
Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006 |
[12] |
Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043 |
[13] |
Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 |
[14] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[15] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[16] |
Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 |
[17] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[18] |
Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785 |
[19] |
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 |
[20] |
Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]