December  2018, 23(10): 4063-4085. doi: 10.3934/dcdsb.2018126

Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity

1. 

School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710126, China

2. 

School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, China

Received  June 2017 Revised  October 2017 Published  April 2018

Fund Project: The first author was supported by the NSF of China (11401453,11671315). The second author was supported by the NSF of China (11501446), Natural Science Research Fund of Northwest University (14NW17), and Scientific Research Plan Projects of Education Department of Shaanxi Provincial Government (15JK1765).

A non-local delayed reaction-diffusion model with a quiescent stage is investigated. It is shown that the spreading speed of this model without quasi-monotonicity is linearly determinate and coincides with the minimal wave speed of traveling waves.

Citation: Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: J. A. Goldstein (Ed. ), Partial Differential Equations and Related Topics, in: Lecture Notes in Math., vol. 446, Springer-Verlag, 1975, pp. 5–49.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1-15.  doi: 10.1016/j.matpur.2012.10.009.  Google Scholar

[6]

J. FangJ. J. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[7]

J. FangK. LanG. Seo and J. Wu, Spatial dynamics of an age-structured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), 959-979.  doi: 10.1137/130930273.  Google Scholar

[8]

K. P. Hadeler, T. Hillen and M. A. Lewis, Biological modeling with quiescent phases, in: C. Cosner, S. Cantrell, S. Ruan (Eds. ), Spatial Ecology, Taylor and Francis, 2009. (Chapter 5) Google Scholar

[9]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.   Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.  Google Scholar

[11]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.  doi: 10.1088/0951-7715/26/1/121.  Google Scholar

[12]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[13]

W. T. LiS. Ruan and Z. C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlin. Sci., 17 (2007), 505-525.  doi: 10.1007/s00332-007-9003-9.  Google Scholar

[14]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[15]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

R. Lui, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[19]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.   Google Scholar

[20]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[21]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of mathematical monographs, Province, RI: American Mathematical Society, 1994.  Google Scholar

[22]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[23]

H. Wang and C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2243-2266.  doi: 10.3934/dcdsb.2012.17.2243.  Google Scholar

[24]

Z. C. WangW. T. Li and S. Ruan, Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[25]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[26]

S. L. Wu and C. H. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.  doi: 10.1017/S0308210512001412.  Google Scholar

[27]

S. L. WuC. H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.  doi: 10.1016/j.jde.2014.10.009.  Google Scholar

[28]

S. L. Wu and H. Q. Zhao, Traveling fronts for a delayed reaction-diffusion system with a quiescent stage, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3610-3621.  doi: 10.1016/j.cnsns.2011.01.012.  Google Scholar

[29]

Z. Xu and D. Xiao, Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differential Equations, 260 (2016), 268-303.  doi: 10.1016/j.jde.2015.08.049.  Google Scholar

[30]

X. Yu and X.-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Differential Equations, 261 (2016), 340-372.  doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[31]

P. Zhang and W. T. Li, Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage, Nonlinear Anal., 72 (2010), 2178-2189.  doi: 10.1016/j.na.2009.10.016.  Google Scholar

[32]

K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. A, 463 (2007), 1029-1043.  doi: 10.1098/rspa.2006.1806.  Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional-differential equa-tions, Can. Appl. Math. Q., 4 (1996), 421-444.   Google Scholar

[34]

H. Q. Zhao and S. Liu, Spatial dynamics for a non-quasi-monotone reaction-diffusion system with delay and quiescent stage, Appl. Math. Model., 40 (2016), 4291-4301.  doi: 10.1016/j.apm.2015.11.036.  Google Scholar

[35]

X.-Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dyn. Differ. Equ., 18 (2006), 1001-1019.  doi: 10.1007/s10884-006-9044-z.  Google Scholar

[36]

X. -Q. Zhao, Dynamical Systems in Population Biology, second edition, Springer, New York, 2017.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: J. A. Goldstein (Ed. ), Partial Differential Equations and Related Topics, in: Lecture Notes in Math., vol. 446, Springer-Verlag, 1975, pp. 5–49.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66.  doi: 10.1016/S0022-5193(89)80189-4.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1-15.  doi: 10.1016/j.matpur.2012.10.009.  Google Scholar

[6]

J. FangJ. J. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[7]

J. FangK. LanG. Seo and J. Wu, Spatial dynamics of an age-structured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), 959-979.  doi: 10.1137/130930273.  Google Scholar

[8]

K. P. Hadeler, T. Hillen and M. A. Lewis, Biological modeling with quiescent phases, in: C. Cosner, S. Cantrell, S. Ruan (Eds. ), Spatial Ecology, Taylor and Francis, 2009. (Chapter 5) Google Scholar

[9]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499.   Google Scholar

[10]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.  Google Scholar

[11]

C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.  doi: 10.1088/0951-7715/26/1/121.  Google Scholar

[12]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.  Google Scholar

[13]

W. T. LiS. Ruan and Z. C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlin. Sci., 17 (2007), 505-525.  doi: 10.1007/s00332-007-9003-9.  Google Scholar

[14]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[15]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

R. Lui, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[18]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[19]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.   Google Scholar

[20]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[21]

A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of mathematical monographs, Province, RI: American Mathematical Society, 1994.  Google Scholar

[22]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[23]

H. Wang and C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2243-2266.  doi: 10.3934/dcdsb.2012.17.2243.  Google Scholar

[24]

Z. C. WangW. T. Li and S. Ruan, Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.  Google Scholar

[25]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.  Google Scholar

[26]

S. L. Wu and C. H. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.  doi: 10.1017/S0308210512001412.  Google Scholar

[27]

S. L. WuC. H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.  doi: 10.1016/j.jde.2014.10.009.  Google Scholar

[28]

S. L. Wu and H. Q. Zhao, Traveling fronts for a delayed reaction-diffusion system with a quiescent stage, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3610-3621.  doi: 10.1016/j.cnsns.2011.01.012.  Google Scholar

[29]

Z. Xu and D. Xiao, Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differential Equations, 260 (2016), 268-303.  doi: 10.1016/j.jde.2015.08.049.  Google Scholar

[30]

X. Yu and X.-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Differential Equations, 261 (2016), 340-372.  doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[31]

P. Zhang and W. T. Li, Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage, Nonlinear Anal., 72 (2010), 2178-2189.  doi: 10.1016/j.na.2009.10.016.  Google Scholar

[32]

K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. A, 463 (2007), 1029-1043.  doi: 10.1098/rspa.2006.1806.  Google Scholar

[33]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional-differential equa-tions, Can. Appl. Math. Q., 4 (1996), 421-444.   Google Scholar

[34]

H. Q. Zhao and S. Liu, Spatial dynamics for a non-quasi-monotone reaction-diffusion system with delay and quiescent stage, Appl. Math. Model., 40 (2016), 4291-4301.  doi: 10.1016/j.apm.2015.11.036.  Google Scholar

[35]

X.-Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dyn. Differ. Equ., 18 (2006), 1001-1019.  doi: 10.1007/s10884-006-9044-z.  Google Scholar

[36]

X. -Q. Zhao, Dynamical Systems in Population Biology, second edition, Springer, New York, 2017.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (317)
  • HTML views (683)
  • Cited by (0)

Other articles
by authors

[Back to Top]