\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity

The first author was supported by the NSF of China (11401453,11671315). The second author was supported by the NSF of China (11501446), Natural Science Research Fund of Northwest University (14NW17), and Scientific Research Plan Projects of Education Department of Shaanxi Provincial Government (15JK1765).
Abstract Full Text(HTML) Related Papers Cited by
  • A non-local delayed reaction-diffusion model with a quiescent stage is investigated. It is shown that the spreading speed of this model without quasi-monotonicity is linearly determinate and coincides with the minimal wave speed of traveling waves.

    Mathematics Subject Classification: Primary: 35K57, 92D25; Secondary: 35R10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: J. A. Goldstein (Ed. ), Partial Differential Equations and Related Topics, in: Lecture Notes in Math., vol. 446, Springer-Verlag, 1975, pp. 5–49.
    [2] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.
    [3] N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989), 57-66.  doi: 10.1016/S0022-5193(89)80189-4.
    [4] N. F. Britton, Spatial structures and periodic travelling waves in an integro-deferential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.
    [5] A. Ducrot, Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system, J. Math. Pures Appl., 100 (2013), 1-15.  doi: 10.1016/j.matpur.2012.10.009.
    [6] J. FangJ. J. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934.  doi: 10.1098/rspa.2009.0577.
    [7] J. FangK. LanG. Seo and J. Wu, Spatial dynamics of an age-structured population model of Asian clams, SIAM J. Appl. Math., 74 (2014), 959-979.  doi: 10.1137/130930273.
    [8] K. P. Hadeler, T. Hillen and M. A. Lewis, Biological modeling with quiescent phases, in: C. Cosner, S. Cantrell, S. Ruan (Eds. ), Spatial Ecology, Taylor and Francis, 2009. (Chapter 5)
    [9] K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment, Can. Appl. Math. Q., 10 (2002), 473-499. 
    [10] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
    [11] C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.  doi: 10.1088/0951-7715/26/1/121.
    [12] S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.  doi: 10.1137/070703016.
    [13] W. T. LiS. Ruan and Z. C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delay, J. Nonlin. Sci., 17 (2007), 505-525.  doi: 10.1007/s00332-007-9003-9.
    [14] B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.
    [15] X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.
    [16] X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.
    [17] R. Lui, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.
    [18] S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.
    [19] R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. 
    [20] H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.
    [21] A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of mathematical monographs, Province, RI: American Mathematical Society, 1994.
    [22] H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.
    [23] H. Wang and C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2243-2266.  doi: 10.3934/dcdsb.2012.17.2243.
    [24] Z. C. WangW. T. Li and S. Ruan, Travelling wave-fronts in reaction-diffusion systems with spatio-temporal delays, J. Differential Equations, 222 (2006), 185-232.  doi: 10.1016/j.jde.2005.08.010.
    [25] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.
    [26] S. L. Wu and C. H. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.  doi: 10.1017/S0308210512001412.
    [27] S. L. WuC. H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.  doi: 10.1016/j.jde.2014.10.009.
    [28] S. L. Wu and H. Q. Zhao, Traveling fronts for a delayed reaction-diffusion system with a quiescent stage, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 3610-3621.  doi: 10.1016/j.cnsns.2011.01.012.
    [29] Z. Xu and D. Xiao, Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays, J. Differential Equations, 260 (2016), 268-303.  doi: 10.1016/j.jde.2015.08.049.
    [30] X. Yu and X.-Q. Zhao, A nonlocal spatial model for Lyme disease, J. Differential Equations, 261 (2016), 340-372.  doi: 10.1016/j.jde.2016.03.014.
    [31] P. Zhang and W. T. Li, Monotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage, Nonlinear Anal., 72 (2010), 2178-2189.  doi: 10.1016/j.na.2009.10.016.
    [32] K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a quiescent stage, Proc. R. Soc. A, 463 (2007), 1029-1043.  doi: 10.1098/rspa.2006.1806.
    [33] X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional-differential equa-tions, Can. Appl. Math. Q., 4 (1996), 421-444. 
    [34] H. Q. Zhao and S. Liu, Spatial dynamics for a non-quasi-monotone reaction-diffusion system with delay and quiescent stage, Appl. Math. Model., 40 (2016), 4291-4301.  doi: 10.1016/j.apm.2015.11.036.
    [35] X.-Q. Zhao and D. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model, J. Dyn. Differ. Equ., 18 (2006), 1001-1019.  doi: 10.1007/s10884-006-9044-z.
    [36] X. -Q. Zhao, Dynamical Systems in Population Biology, second edition, Springer, New York, 2017.
  • 加载中
SHARE

Article Metrics

HTML views(792) PDF downloads(464) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return