August  2018, 23(6): 2593-2605. doi: 10.3934/dcdsb.2018129

Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor

College of Mathematical and Informational Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

* Corresponding author: Huijuan Song

Received  July 2017 Revised  October 2017 Published  July 2018

We consider a free boundary problem modeling the growth of angiogenesis tumor with inhibitor, in which the tumor aggressiveness is modeled by a parameter $μ$. The existences of radially symmetric stationary solution and symmetry-breaking stationary solution are established. In addition, it is proved that there exist a positive integer $m^{**}$ and a sequence of $μ_m$, such that for each $μ_m(m > m^{**})$, the symmetry-breaking stationary solution is a bifurcation branch of the radially symmetric stationary solution.

Citation: Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129
References:
[1]

R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modeling, Bull. Math. Biol., 66 (2004), 1039-1091.  doi: 10.1016/j.bulm.2003.11.002.  Google Scholar

[2]

H. M. Byrne and M. A. J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181.  doi: 10.1016/0025-5564(94)00117-3.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

V. CristiniJ. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.  doi: 10.1007/s00285-002-0174-6.  Google Scholar

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426.  doi: 10.1007/s002850100130.  Google Scholar

[6]

S. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.  doi: 10.1137/060657509.  Google Scholar

[7]

S. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.  doi: 10.1080/03605300701743848.  Google Scholar

[8]

S. Cui and A. Friedman, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137.  doi: 10.1016/S0025-5564(99)00063-2.  Google Scholar

[9]

J. Escher and A. V. Matioc, Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math., 97 (2011), 79-90.  doi: 10.1007/s00013-011-0276-8.  Google Scholar

[10]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.   Google Scholar

[11]

A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 147-159.   Google Scholar

[12]

A. Friedman, Cancer models and their mathematical analysis, in Lecture Notes in Math., Vol. 1872, Springer, (2006), 223-246.  Google Scholar

[13]

A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.  doi: 10.1142/S0218202507002467.  Google Scholar

[14]

A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Ration. Mech. Anal., 180 (2006), 293-330.  doi: 10.1007/s00205-005-0408-z.  Google Scholar

[15]

A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Differential Equation, 227 (2006), 598-639.  doi: 10.1016/j.jde.2005.09.008.  Google Scholar

[16]

A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.  doi: 10.1137/060656292.  Google Scholar

[17]

A. Friedman and B. Hu, Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342.  doi: 10.1090/S0002-9947-08-04468-1.  Google Scholar

[18]

A. Friedman and K. Y. Lam, Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.  doi: 10.1016/j.jde.2015.08.032.  Google Scholar

[19]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284.  doi: 10.1007/s002850050149.  Google Scholar

[20]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.  doi: 10.1090/S0002-9947-00-02715-X.  Google Scholar

[21]

A. Friedman and F. Reitich, Nonlinear stability of a quasi-static Stefan problem with surface tension: A continuation approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 341-403.   Google Scholar

[22]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), 229-242.  doi: 10.1016/S0022-5193(76)80054-9.  Google Scholar

[23]

W. HaoJ. D. HauensteinB. HuY. LiuA. J. Sommese and Y. -T. Zhang, Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core, Nonlinear Anal. Real World Appl., 13 (2012), 694-709.  doi: 10.1016/j.nonrwa.2011.08.010.  Google Scholar

[24]

Y. HuangZ. Zhang and B. Hu, Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.  doi: 10.1016/j.nonrwa.2016.12.003.  Google Scholar

[25]

J. S. LowengrubH. B. FrieboesF. JinY. -L. ChuangX. LiP. MacklinS. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1-R91.  doi: 10.1088/0951-7715/23/1/R01.  Google Scholar

[26]

Z. Wang, Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.  doi: 10.1016/j.nonrwa.2014.03.001.  Google Scholar

[27]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893.  doi: 10.1016/j.jde.2015.12.023.  Google Scholar

[28]

J. Wu and S. Cui, Asymptotic behaviour of solutions of a free boundary problem modelling the growth of tumours in the presence of inhibitors, Nonlinearity, 20 (2007), 2389-2408.  doi: 10.1088/0951-7715/20/10/007.  Google Scholar

[29]

J. Wu and S. Cui, Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.  doi: 10.1002/mma.3190.  Google Scholar

[30]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930.  doi: 10.1016/j.jde.2017.01.012.  Google Scholar

[31]

S. Xu, M. Bai and F. Zhang, Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), online. Google Scholar

[32]

C. XueA. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 16782-16787.   Google Scholar

[33]

F. ZhouJ. Escher and S. Cui, Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.  doi: 10.1016/j.jmaa.2007.03.107.  Google Scholar

[34]

F. Zhou and J. Wu, Stability and bifurcation analysis of a free boundary problem modelling multi-layer tumours with Gibbs-Thomson relation, European J. Appl. Math., 26 (2015), 401-425.  doi: 10.1017/S0956792515000108.  Google Scholar

show all references

References:
[1]

R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modeling, Bull. Math. Biol., 66 (2004), 1039-1091.  doi: 10.1016/j.bulm.2003.11.002.  Google Scholar

[2]

H. M. Byrne and M. A. J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181.  doi: 10.1016/0025-5564(94)00117-3.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

V. CristiniJ. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.  doi: 10.1007/s00285-002-0174-6.  Google Scholar

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426.  doi: 10.1007/s002850100130.  Google Scholar

[6]

S. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.  doi: 10.1137/060657509.  Google Scholar

[7]

S. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.  doi: 10.1080/03605300701743848.  Google Scholar

[8]

S. Cui and A. Friedman, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137.  doi: 10.1016/S0025-5564(99)00063-2.  Google Scholar

[9]

J. Escher and A. V. Matioc, Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math., 97 (2011), 79-90.  doi: 10.1007/s00013-011-0276-8.  Google Scholar

[10]

M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.   Google Scholar

[11]

A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 147-159.   Google Scholar

[12]

A. Friedman, Cancer models and their mathematical analysis, in Lecture Notes in Math., Vol. 1872, Springer, (2006), 223-246.  Google Scholar

[13]

A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.  doi: 10.1142/S0218202507002467.  Google Scholar

[14]

A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Ration. Mech. Anal., 180 (2006), 293-330.  doi: 10.1007/s00205-005-0408-z.  Google Scholar

[15]

A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Differential Equation, 227 (2006), 598-639.  doi: 10.1016/j.jde.2005.09.008.  Google Scholar

[16]

A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.  doi: 10.1137/060656292.  Google Scholar

[17]

A. Friedman and B. Hu, Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342.  doi: 10.1090/S0002-9947-08-04468-1.  Google Scholar

[18]

A. Friedman and K. Y. Lam, Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.  doi: 10.1016/j.jde.2015.08.032.  Google Scholar

[19]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284.  doi: 10.1007/s002850050149.  Google Scholar

[20]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.  doi: 10.1090/S0002-9947-00-02715-X.  Google Scholar

[21]

A. Friedman and F. Reitich, Nonlinear stability of a quasi-static Stefan problem with surface tension: A continuation approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 341-403.   Google Scholar

[22]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), 229-242.  doi: 10.1016/S0022-5193(76)80054-9.  Google Scholar

[23]

W. HaoJ. D. HauensteinB. HuY. LiuA. J. Sommese and Y. -T. Zhang, Bifurcation for a free boundary problem modeling the growth of a tumor with a necrotic core, Nonlinear Anal. Real World Appl., 13 (2012), 694-709.  doi: 10.1016/j.nonrwa.2011.08.010.  Google Scholar

[24]

Y. HuangZ. Zhang and B. Hu, Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.  doi: 10.1016/j.nonrwa.2016.12.003.  Google Scholar

[25]

J. S. LowengrubH. B. FrieboesF. JinY. -L. ChuangX. LiP. MacklinS. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1-R91.  doi: 10.1088/0951-7715/23/1/R01.  Google Scholar

[26]

Z. Wang, Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.  doi: 10.1016/j.nonrwa.2014.03.001.  Google Scholar

[27]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893.  doi: 10.1016/j.jde.2015.12.023.  Google Scholar

[28]

J. Wu and S. Cui, Asymptotic behaviour of solutions of a free boundary problem modelling the growth of tumours in the presence of inhibitors, Nonlinearity, 20 (2007), 2389-2408.  doi: 10.1088/0951-7715/20/10/007.  Google Scholar

[29]

J. Wu and S. Cui, Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.  doi: 10.1002/mma.3190.  Google Scholar

[30]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930.  doi: 10.1016/j.jde.2017.01.012.  Google Scholar

[31]

S. Xu, M. Bai and F. Zhang, Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), online. Google Scholar

[32]

C. XueA. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 16782-16787.   Google Scholar

[33]

F. ZhouJ. Escher and S. Cui, Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.  doi: 10.1016/j.jmaa.2007.03.107.  Google Scholar

[34]

F. Zhou and J. Wu, Stability and bifurcation analysis of a free boundary problem modelling multi-layer tumours with Gibbs-Thomson relation, European J. Appl. Math., 26 (2015), 401-425.  doi: 10.1017/S0956792515000108.  Google Scholar

[1]

Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112

[2]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[3]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[4]

Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979

[5]

Anna Goƚȩbiewska, Norimichi Hirano, Sƚawomir Rybicki. Global symmetry-breaking bifurcations of critical orbits of invariant functionals. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2005-2017. doi: 10.3934/dcdss.2019129

[6]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[7]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[8]

Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1

[9]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[10]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[11]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[12]

Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3399-3411. doi: 10.3934/dcds.2019140

[13]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[14]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117

[17]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[18]

Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3535-3551. doi: 10.3934/dcdsb.2017213

[19]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[20]

Olga Kharlampovich and Alexei Myasnikov. Tarski's problem about the elementary theory of free groups has a positive solution. Electronic Research Announcements, 1998, 4: 101-108.

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (55)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]