December  2018, 23(10): 4171-4186. doi: 10.3934/dcdsb.2018131

On the Cauchy problem for the XFEL Schrödinger equation

1. 

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

* Corresponding author: Binhua Feng

Received  August 2017 Published  April 2018

Fund Project: This work is supported by NSFC Grants (No. 11601435, No. 11475073), Gansu Provincial Natural Science Foundation (1606RJZA010) and NWNU-LKQN-14-6.

In this paper, we consider the Cauchy problem for the nonlinear Schrödinger equation with a time-dependent electromagnetic field and a Coulomb potential, which arises as an effective single particle model in X-ray free electron lasers(XFEL). We firstly show the local and global well-posedness for the Cauchy problem under the assumption that the magnetic potential is unbounded and time-dependent, and then obtain the regularity by a fixed point argument.

Citation: Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131
References:
[1]

P. AntonelliA. AthanassoulisH. Hajaiej and P. Markowich, On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.  doi: 10.1007/s00205-013-0715-8.  Google Scholar

[2]

P. AntonelliA. AthanassoulisZ. Y. Huang and P. Markowich, Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.  doi: 10.1137/130927838.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.  Google Scholar

[4]

T. Cazenave and M. J. Esteban, On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[5]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. Google Scholar

[6]

T. Cazenave and F. B. Weissler, The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.  doi: 10.1007/BF01258601.  Google Scholar

[7]

H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679.   Google Scholar

[8]

A. De Bouard, Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[9]

B. Feng, Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.  doi: 10.1016/j.na.2017.02.028.  Google Scholar

[10]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.  doi: 10.3934/eect.2015.4.431.  Google Scholar

[11]

B. Feng and D. Zhao, Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.  doi: 10.1016/j.jde.2015.10.026.  Google Scholar

[12]

B. FengD. Zhao and C. Sun, On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.  doi: 10.1016/j.jmaa.2014.03.019.  Google Scholar

[13]

A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality? Phys. Rev. Lett., 106 (2011), 105504. doi: 10.1103/PhysRevLett.106.105504.  Google Scholar

[14]

T. Kato, On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[15]

L. Michel, Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.  doi: 10.1080/03605300801891927.  Google Scholar

[16]

Y. Nakamura and A. Shimomura, Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.  doi: 10.14492/hokmj/1285766208.  Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. Google Scholar

[18]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. Google Scholar

[19]

K. Yajima, Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.  doi: 10.1007/BF02820459.  Google Scholar

show all references

References:
[1]

P. AntonelliA. AthanassoulisH. Hajaiej and P. Markowich, On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.  doi: 10.1007/s00205-013-0715-8.  Google Scholar

[2]

P. AntonelliA. AthanassoulisZ. Y. Huang and P. Markowich, Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.  doi: 10.1137/130927838.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.  Google Scholar

[4]

T. Cazenave and M. J. Esteban, On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[5]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. Google Scholar

[6]

T. Cazenave and F. B. Weissler, The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.  doi: 10.1007/BF01258601.  Google Scholar

[7]

H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679.   Google Scholar

[8]

A. De Bouard, Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[9]

B. Feng, Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.  doi: 10.1016/j.na.2017.02.028.  Google Scholar

[10]

B. Feng and X. Yuan, On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.  doi: 10.3934/eect.2015.4.431.  Google Scholar

[11]

B. Feng and D. Zhao, Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.  doi: 10.1016/j.jde.2015.10.026.  Google Scholar

[12]

B. FengD. Zhao and C. Sun, On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.  doi: 10.1016/j.jmaa.2014.03.019.  Google Scholar

[13]

A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality? Phys. Rev. Lett., 106 (2011), 105504. doi: 10.1103/PhysRevLett.106.105504.  Google Scholar

[14]

T. Kato, On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[15]

L. Michel, Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.  doi: 10.1080/03605300801891927.  Google Scholar

[16]

Y. Nakamura and A. Shimomura, Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.  doi: 10.14492/hokmj/1285766208.  Google Scholar

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. Google Scholar

[18]

C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. Google Scholar

[19]

K. Yajima, Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.  doi: 10.1007/BF02820459.  Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[2]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[3]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[8]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[14]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[15]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (158)
  • HTML views (581)
  • Cited by (0)

Other articles
by authors

[Back to Top]