-
Previous Article
A perturbed fourth order elliptic equation with negative exponent
- DCDS-B Home
- This Issue
-
Next Article
Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ)
On the Cauchy problem for the XFEL Schrödinger equation
1. | Department of Mathematics, Northwest Normal University, Lanzhou 730070, China |
2. | School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China |
In this paper, we consider the Cauchy problem for the nonlinear Schrödinger equation with a time-dependent electromagnetic field and a Coulomb potential, which arises as an effective single particle model in X-ray free electron lasers(XFEL). We firstly show the local and global well-posedness for the Cauchy problem under the assumption that the magnetic potential is unbounded and time-dependent, and then obtain the regularity by a fixed point argument.
References:
[1] |
P. Antonelli, A. Athanassoulis, H. Hajaiej and P. Markowich,
On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.
doi: 10.1007/s00205-013-0715-8. |
[2] |
P. Antonelli, A. Athanassoulis, Z. Y. Huang and P. Markowich,
Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.
doi: 10.1137/130927838. |
[3] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[4] |
T. Cazenave and M. J. Esteban,
On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.
doi: 10.1016/j.jde.2003.12.002. |
[5] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. Google Scholar |
[6] |
T. Cazenave and F. B. Weissler,
The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.
doi: 10.1007/BF01258601. |
[7] |
H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679. Google Scholar |
[8] |
A. De Bouard,
Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.
doi: 10.1016/j.jde.2003.12.002. |
[9] |
B. Feng,
Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.
doi: 10.1016/j.na.2017.02.028. |
[10] |
B. Feng and X. Yuan,
On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.
doi: 10.3934/eect.2015.4.431. |
[11] |
B. Feng and D. Zhao,
Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.
doi: 10.1016/j.jde.2015.10.026. |
[12] |
B. Feng, D. Zhao and C. Sun,
On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.
doi: 10.1016/j.jmaa.2014.03.019. |
[13] |
A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality?
Phys. Rev. Lett., 106 (2011), 105504.
doi: 10.1103/PhysRevLett.106.105504. |
[14] |
T. Kato,
On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.
doi: 10.1016/j.jde.2003.12.002. |
[15] |
L. Michel,
Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.
doi: 10.1080/03605300801891927. |
[16] |
Y. Nakamura and A. Shimomura,
Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.
doi: 10.14492/hokmj/1285766208. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. Google Scholar |
[18] |
C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. Google Scholar |
[19] |
K. Yajima,
Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
doi: 10.1007/BF02820459. |
show all references
References:
[1] |
P. Antonelli, A. Athanassoulis, H. Hajaiej and P. Markowich,
On the XFEL Schrödinger equation: Highly oscillatory magnetic potentials and time averaging, Arch. Ration. Mech. Anal., 211 (2014), 711-732.
doi: 10.1007/s00205-013-0715-8. |
[2] |
P. Antonelli, A. Athanassoulis, Z. Y. Huang and P. Markowich,
Numerical Simulations of X-Ray Free Electron Lasers (XFEL), Multiscale Model. Simul., 12 (2014), 1607-1621.
doi: 10.1137/130927838. |
[3] |
T. Cazenave,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. |
[4] |
T. Cazenave and M. J. Esteban,
On the stability of stationary states for non-linear Schrödinger equations with an external magnetic field, Mat. Apl. Comput., 7 (1988), 155-168.
doi: 10.1016/j.jde.2003.12.002. |
[5] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. Google Scholar |
[6] |
T. Cazenave and F. B. Weissler,
The Cauchy problem for the non-linear Schrödinger equation in $H^1$, Manuscripta Math., 61 (1988), 477-494.
doi: 10.1007/BF01258601. |
[7] |
H. N. Chapman, Femtosecond time-delay X-ray holography, Nature, 61 (2007), 676-679. Google Scholar |
[8] |
A. De Bouard,
Non-linear Schrödinger equations with magnetic fields, Differential Integral Equations, 4 (1991), 73-88.
doi: 10.1016/j.jde.2003.12.002. |
[9] |
B. Feng,
Averaging of the nonlinear Schrödinger equation with highly oscillatory magnetic potentials, Nonlinear Anal., 156 (2017), 275-285.
doi: 10.1016/j.na.2017.02.028. |
[10] |
B. Feng and X. Yuan,
On the Cauchy problem for the Schrödinger-Hartree equation, Evol. Equ. Control Theory, 4 (2015), 431-445.
doi: 10.3934/eect.2015.4.431. |
[11] |
B. Feng and D. Zhao,
Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differential Equations, 260 (2016), 2973-2993.
doi: 10.1016/j.jde.2015.10.026. |
[12] |
B. Feng, D. Zhao and C. Sun,
On the Cauchy problem for the nonlinear Schrödinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl., 416 (2014), 901-923.
doi: 10.1016/j.jmaa.2014.03.019. |
[13] |
A. Fratalocchi and G. Ruocco, Single-molecule imaging with X-ray free electron lasers: Dream or reality?
Phys. Rev. Lett., 106 (2011), 105504.
doi: 10.1103/PhysRevLett.106.105504. |
[14] |
T. Kato,
On nonlinear Schrödinger equations, Ann. IHP (Phys. Theor.), 46 (1987), 113-129.
doi: 10.1016/j.jde.2003.12.002. |
[15] |
L. Michel,
Remarks on non-linear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 33 (2008), 1198-1215.
doi: 10.1080/03605300801891927. |
[16] |
Y. Nakamura and A. Shimomura,
Local well-posedness and smoothing effects of strong solutions for non-linear Schrödinger equations with potentials and magnetic fields, Hokkaido Math. J., 34 (2005), 37-63.
doi: 10.14492/hokmj/1285766208. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1983. Google Scholar |
[18] |
C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, Springer-Verlag, New York, 1999. Google Scholar |
[19] |
K. Yajima,
Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
doi: 10.1007/BF02820459. |
[1] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[2] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[3] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[4] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[5] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[6] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[7] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[8] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[9] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[10] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[11] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[12] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[13] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[14] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[15] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[16] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[17] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[18] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[19] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[20] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]