-
Previous Article
Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate
- DCDS-B Home
- This Issue
-
Next Article
A perturbed fourth order elliptic equation with negative exponent
Carleman estimate for solutions to a degenerate convection-diffusion equation
1. | School of Mathematics, Jilin University, Changchun 130012, China |
2. | School of Basic Science, Changchun University of Technology, Changchun 130012, China |
3. | College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China |
This paper concerns a control system governed by a convection-diffusion equation, which is weakly degenerate at the boundary. In the governing equation, the convection is independent of the degeneracy of the equation and cannot be controlled by the diffusion. The Carleman estimate is established by means of a suitable transformation, by which the diffusion and the convection are transformed into a complex union, and complicated and detailed computations. Then the observability inequality is proved and the control system is shown to be null controllable.
References:
[1] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[2] |
V. Barbu,
Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 56 (2002), 143-211.
|
[3] |
U. Biccari, Boundary controllability for a one-dimensional heat equation with two singular inverse-square potentials, arXiv: 1509.05178. Google Scholar |
[4] |
U. Biccari and E. Zuazua,
Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function, J. Differential Equations, 261 (2016), 2809-2853.
doi: 10.1016/j.jde.2016.05.019. |
[5] |
P. Cannarsa and G. Fragnelli,
Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 2006 (2006), 1-20.
|
[6] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 695-715.
doi: 10.3934/nhm.2007.2.695. |
[7] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.
doi: 10.1007/s00028-008-0353-34. |
[8] |
P. Cannarsa, G. Fragnelli and J. Vancostenoble,
Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 320 (2006), 804-818.
doi: 10.1016/j.jmaa.2005.07.006. |
[9] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635.
doi: 10.3934/cpaa.2004.3.607. |
[10] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.
|
[11] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.
doi: 10.1137/04062062X. |
[12] |
M. M. Cavalcanti, E. Fernández-Cara and A. L. Ferreira,
Null controllability of some nonlinear degenerate 1D parabolic equations, J. Franklin Inst., 354 (2017), 6405-6421.
doi: 10.1016/j.jfranklin.2017.08.015. |
[13] |
E. Fernández-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.
|
[14] |
E. Fernández-Cara and E. Zuazua,
Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17 (2000), 583-616.
doi: 10.1016/S0294-1449(00)00117-7. |
[15] |
C. Flores and L. Teresa,
Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, 348 (2010), 391-396.
doi: 10.1016/j.crma.2010.01.007. |
[16] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016), v+84 pp. |
[17] |
G. Fragnelli and D. Mugnai,
Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
|
[18] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996. |
[19] |
H. Gao, X. Hou and N. H. Pavel,
Optimal control and controllability problems for a class of nonlinear degenerate diffusion equations, Panamer. Math. J., 13 (2003), 103-126.
|
[20] |
P. Lin, H. Gao and X. Liu,
Some results on controllability of a nonlinear degenerate parabolic system by bilinear control, J. Math. Anal. Appl., 326 (2007), 1149-1160.
doi: 10.1016/j.jmaa.2006.03.079. |
[21] |
X. Liu and H. Gao,
Controllability of a class of Newtonian filtration equations with control and state constraints, SIAM J. Control Optim., 46 (2007), 2256-2279.
doi: 10.1137/060649951. |
[22] |
P. Martinez, J. P. Raymond and J. Vancostenoble,
Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.
doi: 10.1137/S0363012902403547. |
[23] |
P. Martinez and J. Vancostenoble,
Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362.
doi: 10.1007/s00028-006-0214-6. |
[24] |
C. Wang,
Approximate controllability of a class of degenerate systems, Appl. Math. Comput., 203 (2008), 447-456.
doi: 10.1016/j.amc.2008.04.056. |
[25] |
C. Wang,
Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 10 (2010), 163-193.
doi: 10.1007/s00028-009-0044-4. |
[26] |
C. Wang and R. Du,
Approximate controllability of a class of semilinear degenerate systems with convection term, J. Differential Equations, 254 (2013), 3665-3689.
doi: 10.1016/j.jde.2013.01.038. |
[27] |
C. Wang and R. Du,
Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, SIAM J. Control Optim., 52 (2014), 1457-1480.
doi: 10.1137/110820592. |
[28] |
J. Yin and C. Wang,
Evolutionary weighted $p$-Laplacian with boundary degeneracy, J. Differential Equations, 237 (2007), 421-445.
doi: 10.1016/j.jde.2007.03.012. |
show all references
References:
[1] |
F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli,
Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.
doi: 10.1007/s00028-006-0222-6. |
[2] |
V. Barbu,
Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 56 (2002), 143-211.
|
[3] |
U. Biccari, Boundary controllability for a one-dimensional heat equation with two singular inverse-square potentials, arXiv: 1509.05178. Google Scholar |
[4] |
U. Biccari and E. Zuazua,
Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function, J. Differential Equations, 261 (2016), 2809-2853.
doi: 10.1016/j.jde.2016.05.019. |
[5] |
P. Cannarsa and G. Fragnelli,
Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 2006 (2006), 1-20.
|
[6] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 695-715.
doi: 10.3934/nhm.2007.2.695. |
[7] |
P. Cannarsa, G. Fragnelli and D. Rocchetti,
Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.
doi: 10.1007/s00028-008-0353-34. |
[8] |
P. Cannarsa, G. Fragnelli and J. Vancostenoble,
Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 320 (2006), 804-818.
doi: 10.1016/j.jmaa.2005.07.006. |
[9] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 607-635.
doi: 10.3934/cpaa.2004.3.607. |
[10] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Null controllability of degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.
|
[11] |
P. Cannarsa, P. Martinez and J. Vancostenoble,
Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.
doi: 10.1137/04062062X. |
[12] |
M. M. Cavalcanti, E. Fernández-Cara and A. L. Ferreira,
Null controllability of some nonlinear degenerate 1D parabolic equations, J. Franklin Inst., 354 (2017), 6405-6421.
doi: 10.1016/j.jfranklin.2017.08.015. |
[13] |
E. Fernández-Cara and E. Zuazua,
The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations, 5 (2000), 465-514.
|
[14] |
E. Fernández-Cara and E. Zuazua,
Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17 (2000), 583-616.
doi: 10.1016/S0294-1449(00)00117-7. |
[15] |
C. Flores and L. Teresa,
Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, 348 (2010), 391-396.
doi: 10.1016/j.crma.2010.01.007. |
[16] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016), v+84 pp. |
[17] |
G. Fragnelli and D. Mugnai,
Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
|
[18] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, 1996. |
[19] |
H. Gao, X. Hou and N. H. Pavel,
Optimal control and controllability problems for a class of nonlinear degenerate diffusion equations, Panamer. Math. J., 13 (2003), 103-126.
|
[20] |
P. Lin, H. Gao and X. Liu,
Some results on controllability of a nonlinear degenerate parabolic system by bilinear control, J. Math. Anal. Appl., 326 (2007), 1149-1160.
doi: 10.1016/j.jmaa.2006.03.079. |
[21] |
X. Liu and H. Gao,
Controllability of a class of Newtonian filtration equations with control and state constraints, SIAM J. Control Optim., 46 (2007), 2256-2279.
doi: 10.1137/060649951. |
[22] |
P. Martinez, J. P. Raymond and J. Vancostenoble,
Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.
doi: 10.1137/S0363012902403547. |
[23] |
P. Martinez and J. Vancostenoble,
Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362.
doi: 10.1007/s00028-006-0214-6. |
[24] |
C. Wang,
Approximate controllability of a class of degenerate systems, Appl. Math. Comput., 203 (2008), 447-456.
doi: 10.1016/j.amc.2008.04.056. |
[25] |
C. Wang,
Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 10 (2010), 163-193.
doi: 10.1007/s00028-009-0044-4. |
[26] |
C. Wang and R. Du,
Approximate controllability of a class of semilinear degenerate systems with convection term, J. Differential Equations, 254 (2013), 3665-3689.
doi: 10.1016/j.jde.2013.01.038. |
[27] |
C. Wang and R. Du,
Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, SIAM J. Control Optim., 52 (2014), 1457-1480.
doi: 10.1137/110820592. |
[28] |
J. Yin and C. Wang,
Evolutionary weighted $p$-Laplacian with boundary degeneracy, J. Differential Equations, 237 (2007), 421-445.
doi: 10.1016/j.jde.2007.03.012. |
[1] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[2] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[3] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[4] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[5] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[6] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[7] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[8] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[9] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[10] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[11] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[12] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[13] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[14] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[15] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]