December  2018, 23(10): 4255-4266. doi: 10.3934/dcdsb.2018136

Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China

* Corresponding author

Received  September 2017 Revised  December 2017 Published  April 2018

Fund Project: The first author is supported by Shanghai Peak Subject Funding.

This paper mainly study the dynamics of a Lotka-Volterra reaction-diffusion-advection model for two competing species which disperse by both random diffusion and advection along environmental gradient. In this model, the species are assumed to be identical except spatial resource distribution: heterogeneity vs homogeneity. It is shown that the species with heterogeneous resources distribution is always in a better position, that is, it can always invade when rare. The ratio of advection strength and diffusion rate of the species with heterogeneous distribution plays a crucial role in the dynamics behavior of the system. Some conditions of invasion, driving extinction, and coexistence are given in term of this ratio and the diffusion rate of its competitor.

Citation: Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136
References:
[1]

I. Averill, K. -Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Am. Math. Soc., 245 (2017), v+117 pp.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quarterly, 3 (1995), 379-397.   Google Scholar

[3]

K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.  Google Scholar

[5]

R. S. CantrellC. Cosner and Y. Lou, Movement towards better enviromentsand the evolution of rapid diffusion, Math. Biosciences, 204 (2006), 199-214.  doi: 10.1016/j.mbs.2006.09.003.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Advection mediated coexistence of competing species, Proc. Roy. Soc. Edinb. Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[7]

X. F. ChenR. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.  doi: 10.1007/s00285-008-0166-2.  Google Scholar

[8]

X. F. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrite Contin. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[9]

X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.  doi: 10.1512/iumj.2008.57.3204.  Google Scholar

[10]

X. F. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[11]

C. Cosner and Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[12]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[13]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.  Google Scholar

[14]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[15]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244-251.  doi: 10.1016/0040-5809(83)90027-8.  Google Scholar

[16]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, Ⅰ: Heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[17]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, Ⅱ: The general case, J. Diff. Eqs., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[18]

X. Q. He and W.-M. Ni, Global dynamics of the Lokta-Volterra competition-diffusion system: Diffusion and spatial heterogeneity, Ⅰ, Comm. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[19]

X. Q. He and W. -M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Diff. Equ., 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[20]

X. Q. He and W. -M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Diff. Equ., 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[21]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247, Longman, Harlow, UK, 1991.  Google Scholar

[22]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-51.   Google Scholar

[23]

S. HsuH. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Bnanch spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[25]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[26]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[27]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. A, 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[28]

K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.  doi: 10.1137/120869481.  Google Scholar

[29]

K.-Y. Lam and W.-M. Ni, Advection-mediated competition in general environments, J. Differ. Equ., 257 (2014), 3466-3500.  doi: 10.1016/j.jde.2014.06.019.  Google Scholar

[30]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[31]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences Ⅳ, Lecture Notes in Math., 1922, Springer, Berlin, 2008,171–205.  Google Scholar

[32]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqns, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[33]

W. -M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Sef. in Appl. Math., Vol. 82, SIAM, Philadelphia, 2011.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2nd Ed. Springer, Berlin, 1984.  Google Scholar

[35]

S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1982), 459-470.   Google Scholar

[36]

H. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Math. Survey Monogr. 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

show all references

References:
[1]

I. Averill, K. -Y. Lam and Y. Lou, The role of advection in a two-species competition model: A bifurcation approach, Mem. Am. Math. Soc., 245 (2017), v+117 pp.  Google Scholar

[2]

F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quarterly, 3 (1995), 379-397.   Google Scholar

[3]

K. J. Brown and S. S. Lin, On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function, J. Math. Anal. Appl., 75 (1980), 112-120.  doi: 10.1016/0022-247X(80)90309-1.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.  Google Scholar

[5]

R. S. CantrellC. Cosner and Y. Lou, Movement towards better enviromentsand the evolution of rapid diffusion, Math. Biosciences, 204 (2006), 199-214.  doi: 10.1016/j.mbs.2006.09.003.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Advection mediated coexistence of competing species, Proc. Roy. Soc. Edinb. Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[7]

X. F. ChenR. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386.  doi: 10.1007/s00285-008-0166-2.  Google Scholar

[8]

X. F. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrite Contin. Syst., 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[9]

X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.  doi: 10.1512/iumj.2008.57.3204.  Google Scholar

[10]

X. F. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.  Google Scholar

[11]

C. Cosner and Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503.  doi: 10.1016/S0022-247X(02)00575-9.  Google Scholar

[12]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[13]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.  Google Scholar

[14]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[15]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24 (1983), 244-251.  doi: 10.1016/0040-5809(83)90027-8.  Google Scholar

[16]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, Ⅰ: Heterogeneity vs. homogeneity, J. Diff. Eqs., 254 (2013), 528-546.  doi: 10.1016/j.jde.2012.08.032.  Google Scholar

[17]

X. Q. He and W.-M. Ni, The effects of diffusion and spatial variation in Lokta-Volterra competition-diffusion system, Ⅱ: The general case, J. Diff. Eqs., 254 (2013), 4088-4108.  doi: 10.1016/j.jde.2013.02.009.  Google Scholar

[18]

X. Q. He and W.-M. Ni, Global dynamics of the Lokta-Volterra competition-diffusion system: Diffusion and spatial heterogeneity, Ⅰ, Comm. Pure Appl. Math., 69 (2016), 981-1014.  doi: 10.1002/cpa.21596.  Google Scholar

[19]

X. Q. He and W. -M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅱ, Calc. Var. Partial Diff. Equ., 55 (2016), Art. 25, 20 pp. doi: 10.1007/s00526-016-0964-0.  Google Scholar

[20]

X. Q. He and W. -M. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system with equal amount of total resources, Ⅲ, Calc. Var. Partial Diff. Equ., 56 (2017), Art. 132, 26 pp. doi: 10.1007/s00526-017-1234-5.  Google Scholar

[21]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247, Longman, Harlow, UK, 1991.  Google Scholar

[22]

M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 1-51.   Google Scholar

[23]

S. HsuH. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Bnanch spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[24]

V. HutsonY. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Diff. Eqs., 185 (2002), 97-136.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[25]

K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Differ. Equ., 250 (2011), 161-181.  doi: 10.1016/j.jde.2010.08.028.  Google Scholar

[26]

K.-Y. Lam, Limiting profiles of semilinear elliptic equations with large advection in population dynamics Ⅱ, SIAM J. Math. Anal., 44 (2012), 1808-1830.  doi: 10.1137/100819758.  Google Scholar

[27]

K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. A, 28 (2010), 1051-1067.  doi: 10.3934/dcds.2010.28.1051.  Google Scholar

[28]

K.-Y. Lam and W.-M. Ni, Uniqueness and complete dynamics in the heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.  doi: 10.1137/120869481.  Google Scholar

[29]

K.-Y. Lam and W.-M. Ni, Advection-mediated competition in general environments, J. Differ. Equ., 257 (2014), 3466-3500.  doi: 10.1016/j.jde.2014.06.019.  Google Scholar

[30]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[31]

Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, in Tutorials in Mathematical Biosciences Ⅳ, Lecture Notes in Math., 1922, Springer, Berlin, 2008,171–205.  Google Scholar

[32]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqns, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[33]

W. -M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Sef. in Appl. Math., Vol. 82, SIAM, Philadelphia, 2011.  Google Scholar

[34]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, 2nd Ed. Springer, Berlin, 1984.  Google Scholar

[35]

S. Senn and P. Hess, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Ann., 258 (1982), 459-470.   Google Scholar

[36]

H. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Math. Survey Monogr. 41, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (188)
  • HTML views (500)
  • Cited by (0)

Other articles
by authors

[Back to Top]