This paper is concerned with long-time dynamics of a full von Karman system subject to nonlinear thermal coupling and
Citation: |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials With Memory. Theory and Applications, Springer, New York, 2012.
![]() ![]() |
|
G. Avalos
and I. Lasiecka
, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998)
, 155-182.
doi: 10.1137/S0036141096300823.![]() ![]() ![]() |
|
G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Dedicated to the memory of Pierre Grisvard, Rend. Istit. Mat. Univ. Trieste, 28 (1996), suppl., 1-28 (1997).
![]() ![]() |
|
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Application 25, North-Holland, Amsterdam, 1992.
![]() ![]() |
|
A. Benabdallah
and I. Lasiecka
, Exponential decay rates for a full von Karman system of dynamic thermoelasticity, J. Differential Equations, 160 (2000)
, 51-93.
doi: 10.1006/jdeq.1999.3656.![]() ![]() ![]() |
|
A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. Ⅱ. Systems & Control: Foundations & Applications, Birkhäuser Boston, Boston, 1993.
![]() ![]() |
|
F. Bucci
and I. Chueshov
, Long time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Systems, 22 (2008)
, 557-586.
doi: 10.3934/dcds.2008.22.557.![]() ![]() ![]() |
|
I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext. Springer, Cham, 2015.
![]() ![]() |
|
I. Chueshov
, E. Dowell
, I. Lasiecka
and J. Webster
, Nonlinear elastic plate in a flow of gas: Recent results and conjectures, Appl. Math. Optim., 73 (2016)
, 475-500.
doi: 10.1007/s00245-016-9349-1.![]() ![]() ![]() |
|
I. Chueshov
, M. Eller
and I. Lasiecka
, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002)
, 1901-1951.
doi: 10.1081/PDE-120016132.![]() ![]() ![]() |
|
I. Chueshov
, I. Lasiecka
and J. T. Webster
, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Comm. Partial Differential Equations, 39 (2014)
, 1965-1997.
doi: 10.1080/03605302.2014.930484.![]() ![]() ![]() |
|
I. Chueshov
and I. Lasiecka
, Long-time behavior of second order evolutions with nonlinear
damping, Mem. Amer. Math. Soc., 195 (2008)
, ⅷ+183 pp.
![]() ![]() |
|
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics. Springer, New York, 2010.
![]() ![]() |
|
I. Chueshov
and I. Lasiecka
, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008)
, 195-241.
doi: 10.1007/s00245-007-9031-8.![]() ![]() ![]() |
|
I. Chueshov
and I. Ryzhkova
, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, J. Differential Equations, 254 (2013)
, 1833-1862.
doi: 10.1016/j.jde.2012.11.006.![]() ![]() ![]() |
|
I. Chueshov
and I. Ryzhkova
, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013)
, 1635-1656.
![]() ![]() |
|
P. G. Ciarlet and P. Rabier, Les Équations de von Kármán, Springer Verlag, 1980.
![]() ![]() |
|
P. G. Ciarlet, Mathematical Elasticity, Vol. II, Theory of Plates. Studies in Mathematics and its Applications, 27. North-Holland, Amsterdam, 1997.
![]() ![]() |
|
C. M. Dafermos
, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968)
, 241-271.
doi: 10.1007/BF00276727.![]() ![]() ![]() |
|
M. Eller, V. Isakov, G. Nakamura and D. Tataru, On the uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems, in: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl., North-Holland, Amsterdam, 31 (2002), 329-349.
![]() ![]() |
|
P. G. Geredeli
, I. Lasiecka
and J. T. Webster
, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J. Differential Equations, 254 (2013)
, 1193-1229.
doi: 10.1016/j.jde.2012.10.016.![]() ![]() ![]() |
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, AMS, Providence, 1988.
![]() ![]() |
|
S. Hansen
, Boundary control of a one dimensional linear thermoelastic rod, SIAM J. Control Optim., 32 (1994)
, 1052-1074.
doi: 10.1137/S0363012991222607.![]() ![]() ![]() |
|
M. A. Horn
, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J. Math. Systems Estim. Control, 8 (1998)
, 11pp.
![]() ![]() |
|
V. Isakov
, A nonhyperbolic Cauchy problem for $\Box_a \Box_b $ and its applications to elasticity theory, Comm. Pure Appl. Math., 39 (1986)
, 747-767.
doi: 10.1002/cpa.3160390603.![]() ![]() ![]() |
|
J. U. Kim
, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992)
, 889-899.
doi: 10.1137/0523047.![]() ![]() ![]() |
|
H. Koch
, Slow decay in linear thermoelasticity, Quart. Appl. Math., 58 (2000)
, 601-612.
doi: 10.1090/qam/1788420.![]() ![]() ![]() |
|
H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002), 197-216.
![]() ![]() |
|
H. Koch
and A. Stahel
, Global existence of classical solutions to the dynamical von Kármán equations, Math. Methods Appl. Sci., 16 (1993)
, 581-586.
doi: 10.1002/mma.1670160806.![]() ![]() ![]() |
|
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. ⅷ+156 pp.
![]() ![]() |
|
O. Ladyzhenskaya, Attractors for Semi-groups and Evolution Equations, Cambridge University Press, 1991.
![]() ![]() |
|
J. Lagnese
, The reachability problem for thermoelastic plates, Arch. Rational Mech. Anal., 112 (1990)
, 223-267.
doi: 10.1007/BF00381235.![]() ![]() ![]() |
|
J. E. Lagnese
, Uniform boundary stabilization of thermoelastic plates, Control of boundaries and stabilization, (Clermont-Ferrand, 1988), Lecture Notes in Control and Inform. Sci., 125 (1989)
, 154-167.
![]() ![]() |
|
J. E Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989. SIAM, Philadelphia, PA, 1989.
![]() ![]() |
|
J. E. Lagnese and J. L. Lions, Modeling Analysis and Control of Thin Plates, Research in Applied Mathematics, 6. Masson, Paris, 1988.
![]() ![]() |
|
I. Lasiecka
, Weak, classical and intermediate solutions to full von Karman system of dynamic nonlinear elasticity, Appl. Anal., 68 (1998)
, 121-145.
doi: 10.1080/00036819808840625.![]() ![]() ![]() |
|
I. Lasiecka
, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998)
, 1376-1422.
doi: 10.1137/S0363012996301907.![]() ![]() ![]() |
|
I. Lasiecka
and D. Tataru
, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential and Integral Equations, 6 (1993)
, 507-553.
![]() ![]() |
|
I. Lasiecka
, Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation, Comm. Partial Differential Equations, 24 (1999)
, 1801-1847.
doi: 10.1080/03605309908821483.![]() ![]() ![]() |
|
I. Lasiecka
, J.-L. Lions
and R. Triggiani
, Nonhomogenous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986)
, 149-192.
![]() ![]() |
|
I. Lasiecka
and R. Triggiani
, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 27 (1998)
, 457-482.
![]() ![]() |
|
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74. Cambridge University Press, Cambridge, 2000.
![]() ![]() |
|
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York-Heidelberg, 1972.
![]() ![]() |
|
Z. Liu
and M. Renardy
, A note on the equations of a thermoelastic plate, Appl. Math. Lett., 8 (1995)
, 1-6.
doi: 10.1016/0893-9659(95)00020-Q.![]() ![]() ![]() |
|
J. E. Muñoz Rivera
and R. Racke
, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995)
, 1547-1563.
doi: 10.1137/S0036142993255058.![]() ![]() ![]() |
|
G. Perla Menzala
and F. Travessini De Cezaro
, Global existence and uniqueness of weak and regular solutions of shallow shells with thermal effects, Appl. Math. Optim., 74 (2016)
, 229-271.
doi: 10.1007/s00245-015-9313-5.![]() ![]() ![]() |
|
A. Ruiz
, Unique continuation for weak solutions of the wave equation plus a potential, J. Math. Pures Appl., 71 (1992)
, 455-467.
![]() ![]() |
|
I. Ryzhkova
, Dynamics of a thermoelastic von Kármán plate in a subsonic gas flow, Z. Angew. Math. Phys., 58 (2007)
, 246-261.
doi: 10.1007/s00033-006-0080-7.![]() ![]() ![]() |
|
I. Ryzhkova
, Stabilization of von Kármán plate in the presence of thermal effects in a subsonic potential flow of gas, J. Math. Anal. Appl., 294 (2004)
, 462-481.
doi: 10.1016/j.jmaa.2004.02.021.![]() ![]() ![]() |
|
R. Sakamoto, Hyperbolic Boundary Value Problem, Cambridge University Press, 1982.
![]() ![]() |
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer-Verlag, New York, 1988.
![]() ![]() |
|
P.-F. Yao
, Observability inequalities for shallow shells, SIAM J. Control Optim., 38 (2000)
, 1729-1756.
doi: 10.1137/S0363012999338692.![]() ![]() ![]() |