In this article dedicated to the memory of Igor D. Chueshov, I first summarize in a few words the joint results that we obtained over a period of six years regarding the long-time behavior of solutions to a class of semilinear stochastic parabolic partial differential equations. Then, as the beautiful interplay between partial differential equations and probability theory always was close to Igor's heart, I present some new results concerning the time evolution of certain Markovian Bernstein processes naturally associated with a class of deterministic linear parabolic partial differential equations. Particular instances of such processes are certain conditioned Ornstein-Uhlenbeck processes, generalizations of Bernstein bridges and Bernstein loops, whose laws may evolve in space in a non trivial way. Specifically, I examine in detail the time development of the probability of finding such processes within two-dimensional geometric shapes exhibiting spherical symmetry. I also define a Faedo-Galerkin scheme whose ultimate goal is to allow approximate computations with controlled error terms of the various probability distributions involved.
Citation: |
D. G. Aronson
, Non-negative solutions of linear parabolic equations, Annali della Scuola Normale Superiore di Pisa, 22 (1968)
, 607-694.
![]() ![]() |
|
B. Bergé
, I. D. Chueshov
and P. A. Vuillermot
, On the behavior of solutions to certain parabolic SPDEs driven by Wiener processes, Stochastic Processes and their Applications, 92 (2001)
, 237-263.
doi: 10.1016/S0304-4149(00)00082-X.![]() ![]() ![]() |
|
S. Bernfeld
, Y. Y. Hu
and P. A. Vuillermot
, Large-time asymptotic equivalence for a class of non-autonomous semilinear parabolic equations, Bulletin des Sciences Mathématiques, 122 (1998)
, 337-368.
doi: 10.1016/S0007-4497(98)80341-2.![]() ![]() ![]() |
|
S. Bernstein
, Sur les liaisons entre les grandeurs aléatoires, Verhandlungen des Internationalen Mathematikerkongress, 1 (1932)
, 288-309.
![]() |
|
I. D. Chueshov, Monotone Random Systems -Theory and Applications, Lecture Notes in Mathematics, 1779, Springer Verlag, New York, 2002.
![]() ![]() |
|
I. D. Chueshov
and P. A. Vuillermot
, Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients, Annales de l'Institut Henri-Poincaré C, Analyse Non Linéaire, 15 (1998)
, 191-232.
doi: 10.1016/S0294-1449(97)89299-2.![]() ![]() ![]() |
|
I. D. Chueshov
and P. A. Vuillermot
, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case, Probability Theory and Related Fields, 112 (1998)
, 149-202.
doi: 10.1007/s004400050186.![]() ![]() ![]() |
|
I. D. Chueshov
and P. A. Vuillermot
, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case, Stochastic Analysis and Applications, 18 (2000)
, 581-615.
doi: 10.1080/07362990008809687.![]() ![]() ![]() |
|
I. D. Chueshov
and P. A. Vuillermot
, Non-random invariant sets for some systems of parabolic stochastic partial differential equations, Stochastic Analysis and Applications, 22 (2004)
, 1421-1486.
doi: 10.1081/SAP-200029487.![]() ![]() ![]() |
|
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.
![]() ![]() |
|
A. Erdélyi, W. Magnus, F. Oberhettinger and G. Tricomi, Higher Transcendental Functions, II, McGraw-Hill, Inc., New York, 1953.
![]() |
|
A. Galichon, Optimal Transport Methods in Economics, Princeton University Press, Princeton, 2016.
![]() ![]() |
|
B. Jamison
, Reciprocal processes, Zeitschrift f ür Wahrscheinlichkeitstheorie und Verwandte Gebiete, 30 (1974)
, 65-86.
doi: 10.1007/BF00532864.![]() ![]() ![]() |
|
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer Verlag, New York, 1991.
![]() ![]() |
|
A. Messiah, Quantum Mechanics, Dover Books on Physics, Dover, 2014.
![]() |
|
M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅳ: Analysis of Operators, Academic Press, New York, 1978.
![]() ![]() |
|
S. Roelly
and M. Thieullen
, A characterisation of reciprocal processes via an integration by parts formula on the path space, Probability Theory and Related Fields, 123 (2002)
, 97-120.
doi: 10.1007/s004400100184.![]() ![]() ![]() |
|
E. Schrödinger
, Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique, Annales de l'Institut Henri Poincaré, 2 (1932)
, 269-310.
![]() ![]() |
|
C. Villani, Optimal Transport: Old and New, Grundlehren der Mathematischen Wissenschaften, 338, Springer Verlag, New York, 2009.
![]() ![]() |
|
P. A. Vuillermot
, Global exponential attractors for a class of almost-periodic parabolic equations in $\mathbb{R}^{N}$, Proceedings of the American Mathematical Society, 116 (1992)
, 775-782.
![]() ![]() |
|
P. A. Vuillermot
and J. C. Zambrini
, Bernstein diffusions for a class of linear parabolic partial differential equations, Journal of Theoretical Probability, 27 (2014)
, 449-492.
doi: 10.1007/s10959-012-0426-3.![]() ![]() ![]() |
|
P. A. Vuillermot and J. C. Zambrini, On some Gaussian Bernstein processes in $ {{\mathbb{R}}^{N}}$ and the periodic Ornstein-Uhlenbeck process, Stochastic Analysis and Applications, 34 (2016), 573-597.
doi: 10.1080/07362994.2016.1156547.![]() ![]() ![]() |