-
Previous Article
Random Delta-Hausdorff-attractors
- DCDS-B Home
- This Issue
-
Next Article
Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows
Generalized KdV equation subject to a stochastic perturbation
1. | SAMM, EA 4543, Université Paris 1 Panthéon Sorbonne, 90 Rue de Tolbiac, 75634 Paris Cedex, France and LPSM, Universités Paris 6-Paris 7 |
2. | The George Washington University, Department of Mathematics, Phillips Hall, 801 H St NW, Washington, DC 20052, USA |
We prove global well-posedness of the subcritical generalized Korteweg-de Vries equation (the mKdV and the gKdV with quartic power of nonlinearity) subject to an additive random perturbation. More precisely, we prove that if the driving noise is a cylindrical Wiener process on $L^2(\mathbb{R})$ and the covariance operator is Hilbert-Schmidt in an appropriate Sobolev space, then the solutions with $H^1(\mathbb{R})$ initial data are globally well-posed in $H^1(\mathbb{R})$. This extends results obtained by A. de Bouard and A. Debussche for the stochastic KdV equation.
References:
[1] |
R. A. Adams and J. J. F. Fournier,
Sobolev Spaces Pure and Applied Mathematics Series, 2nd edition, Academic Press, 2003. |
[2] |
J. Bourgain,
Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26.
doi: 10.1007/BF02099299. |
[3] |
A. de Bouard and A. Debussche,
On the Stochastic Korteweg-de Vries Equation, J. Func. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[4] |
A. de Bouard and A. Debussche, The Korteweg-de Vries equation with multiplicative homogeneous noise, in Stochastic Differential Equations: Theory and Applications (eds. P. H. Baxendale and S. V. Lototsky, Interdisciplinary Math. Sciences, World Scientific, 2 (2007), 113-133. |
[5] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries Equations, J. Func. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R} $ and $ \mathbb{T} $, J. Amer. Math. Soc., 16 (2003), 705-749.
|
[7] |
C. S. Gardner,
Korteweg-de Vries equation and generalizations Ⅳ: The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12 (1971), 1548-1551.
doi: 10.1063/1.1665772. |
[8] |
T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Lecture Notes in Math. , Springer Verlag, Berlin, 448 (1975), 27-50. |
[9] |
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud. , 8 (1983), Academic Press, New York, 93-128. |
[10] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[11] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[12] |
T. Oh,
Periodic stochastic Korteweg-de Vries equation with additive space-time noise, Analysis & PDE, 2 (2009), 281-304.
doi: 10.2140/apde.2009.2.281. |
[13] |
G. Richards,
Well-posedness of the stochastic KdV-Burgers equation, Stochastic Processes and their Applications, 124 (2014), 1627-1647.
doi: 10.1016/j.spa.2013.12.008. |
[14] |
R. Temam,
Sur un problème non linéaire, J. Math. Pures Appl., 48 (1969), 159-172.
|
[15] |
P. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, 1756. Springer-Verlag, Berlin, 2001. |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier,
Sobolev Spaces Pure and Applied Mathematics Series, 2nd edition, Academic Press, 2003. |
[2] |
J. Bourgain,
Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994), 1-26.
doi: 10.1007/BF02099299. |
[3] |
A. de Bouard and A. Debussche,
On the Stochastic Korteweg-de Vries Equation, J. Func. Anal., 154 (1998), 215-251.
doi: 10.1006/jfan.1997.3184. |
[4] |
A. de Bouard and A. Debussche, The Korteweg-de Vries equation with multiplicative homogeneous noise, in Stochastic Differential Equations: Theory and Applications (eds. P. H. Baxendale and S. V. Lototsky, Interdisciplinary Math. Sciences, World Scientific, 2 (2007), 113-133. |
[5] |
A. de Bouard, A. Debussche and Y. Tsutsumi,
White noise driven Korteweg-de Vries Equations, J. Func. Anal., 169 (1999), 532-558.
doi: 10.1006/jfan.1999.3484. |
[6] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $ \mathbb{R} $ and $ \mathbb{T} $, J. Amer. Math. Soc., 16 (2003), 705-749.
|
[7] |
C. S. Gardner,
Korteweg-de Vries equation and generalizations Ⅳ: The Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys., 12 (1971), 1548-1551.
doi: 10.1063/1.1665772. |
[8] |
T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Lecture Notes in Math. , Springer Verlag, Berlin, 448 (1975), 27-50. |
[9] |
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud. , 8 (1983), Academic Press, New York, 93-128. |
[10] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[11] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[12] |
T. Oh,
Periodic stochastic Korteweg-de Vries equation with additive space-time noise, Analysis & PDE, 2 (2009), 281-304.
doi: 10.2140/apde.2009.2.281. |
[13] |
G. Richards,
Well-posedness of the stochastic KdV-Burgers equation, Stochastic Processes and their Applications, 124 (2014), 1627-1647.
doi: 10.1016/j.spa.2013.12.008. |
[14] |
R. Temam,
Sur un problème non linéaire, J. Math. Pures Appl., 48 (1969), 159-172.
|
[15] |
P. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, 1756. Springer-Verlag, Berlin, 2001. |
[1] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[2] |
Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 |
[3] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[4] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[5] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[6] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[7] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[8] |
Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 |
[9] |
M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 |
[10] |
Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857 |
[11] |
Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 |
[12] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
[13] |
Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121 |
[14] |
Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245 |
[15] |
Ryan McConnell. Global attractor for the periodic generalized Korteweg-De Vries equation through smoothing. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022115 |
[16] |
Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114 |
[17] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[18] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11 (2) : 281-300. doi: 10.3934/nhm.2016.11.281 |
[19] |
Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429 |
[20] |
Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]