May  2018, 23(3): 1199-1217. doi: 10.3934/dcdsb.2018148

Random Delta-Hausdorff-attractors

1. 

Technische Universität Berlin, Fak. Ⅱ, Institut für Mathematik, Sekr. MA 7-5, Straße des 17. Juni 136,10623 Berlin, Germany

Received  March 2017 Revised  August 2017 Published  February 2018

Fund Project: The second author is supported by the DFG-SPP 1590.

Global random attractors and random point attractors for random dynamical systems have been studied for several decades. Here we introduce two intermediate concepts: Δ-Hausdorff-attractors are characterized by attracting all deterministic compact sets of Hausdorff dimension at most Δ, where Δ is a non-negative number, while cc-attractors attract all countable compact sets. We provide two examples showing that a given random dynamical system may have various different Δ-Hausdorff-attractors for different values of Δ. It seems that both concepts are new even in the context of deterministic dynamical systems.

Citation: Michael Scheutzow, Maite Wilke-Berenguer. Random Delta-Hausdorff-attractors. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1199-1217. doi: 10.3934/dcdsb.2018148
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.  Google Scholar

[2]

S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61.  doi: 10.1214/aoms/1177731642.  Google Scholar

[3]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[5]

H. Crauel, Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002.  Google Scholar

[7]

H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692. Google Scholar

[8]

R. R. DavronovU. U. Jamilov and M. Ladra, Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170.  doi: 10.1080/10236198.2015.1062481.  Google Scholar

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986.  Google Scholar

[10]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.  doi: 10.1007/s00440-016-0716-2.  Google Scholar

[11]

R. N. Ganikhodzhaev, Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.   Google Scholar

[12]

N. N. Ganikhodzaev, The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.   Google Scholar

[13]

U. U. JamilovM. Scheutzow and M. Wilke-Berenguer, On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243.  doi: 10.1017/etds.2015.30.  Google Scholar

[14]

B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017. doi: 10.1088/1742-6596/697/1/012017.  Google Scholar

[15]

P. Mandl, Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.  Google Scholar

[16]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.  Google Scholar

[17]

G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999. Google Scholar

[18]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.   Google Scholar

[19]

M. Wilke Berenguer, A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.  Google Scholar

[2]

S. Bernstein, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61.  doi: 10.1214/aoms/1177731642.  Google Scholar

[3]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.  doi: 10.1080/1468936042000207792.  Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[5]

H. Crauel, Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427.  doi: 10.1017/S0024610700001915.  Google Scholar

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002.  Google Scholar

[7]

H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692. Google Scholar

[8]

R. R. DavronovU. U. Jamilov and M. Ladra, Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170.  doi: 10.1080/10236198.2015.1062481.  Google Scholar

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986.  Google Scholar

[10]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.  doi: 10.1007/s00440-016-0716-2.  Google Scholar

[11]

R. N. Ganikhodzhaev, Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.   Google Scholar

[12]

N. N. Ganikhodzaev, The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.   Google Scholar

[13]

U. U. JamilovM. Scheutzow and M. Wilke-Berenguer, On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243.  doi: 10.1017/etds.2015.30.  Google Scholar

[14]

B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017. doi: 10.1088/1742-6596/697/1/012017.  Google Scholar

[15]

P. Mandl, Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.  Google Scholar

[16]

P. Mörters and Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.  Google Scholar

[17]

G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999. Google Scholar

[18]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.   Google Scholar

[19]

M. Wilke Berenguer, A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016. Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[4]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[17]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (65)
  • HTML views (286)
  • Cited by (0)

Other articles
by authors

[Back to Top]