-
Previous Article
On the Oseledets-splitting for infinite-dimensional random dynamical systems
- DCDS-B Home
- This Issue
-
Next Article
Generalized KdV equation subject to a stochastic perturbation
Random Delta-Hausdorff-attractors
1. | Technische Universität Berlin, Fak. Ⅱ, Institut für Mathematik, Sekr. MA 7-5, Straße des 17. Juni 136,10623 Berlin, Germany |
Global random attractors and random point attractors for random dynamical systems have been studied for several decades. Here we introduce two intermediate concepts: Δ-Hausdorff-attractors are characterized by attracting all deterministic compact sets of Hausdorff dimension at most Δ, where Δ is a non-negative number, while cc-attractors attract all countable compact sets. We provide two examples showing that a given random dynamical system may have various different Δ-Hausdorff-attractors for different values of Δ. It seems that both concepts are new even in the context of deterministic dynamical systems.
References:
[1] |
L. Arnold,
Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. |
[2] |
S. Bernstein,
Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61.
doi: 10.1214/aoms/1177731642. |
[3] |
I. Chueshov and M. Scheutzow,
On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.
doi: 10.1080/1468936042000207792. |
[4] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[5] |
H. Crauel,
Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427.
doi: 10.1017/S0024610700001915. |
[6] |
H. Crauel,
Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002. |
[7] |
H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692. |
[8] |
R. R. Davronov, U. U. Jamilov and M. Ladra,
Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170.
doi: 10.1080/10236198.2015.1062481. |
[9] |
S. N. Ethier and T. G. Kurtz,
Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986. |
[10] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.
doi: 10.1007/s00440-016-0716-2. |
[11] |
R. N. Ganikhodzhaev,
Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.
|
[12] |
N. N. Ganikhodzaev,
The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.
|
[13] |
U. U. Jamilov, M. Scheutzow and M. Wilke-Berenguer,
On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243.
doi: 10.1017/etds.2015.30. |
[14] |
B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017.
doi: 10.1088/1742-6596/697/1/012017. |
[15] |
P. Mandl,
Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968. |
[16] |
P. Mörters and Y. Peres,
Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner. |
[17] |
G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999. |
[18] |
M. Scheutzow,
Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.
|
[19] |
M. Wilke Berenguer,
A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016. |
show all references
References:
[1] |
L. Arnold,
Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. |
[2] |
S. Bernstein,
Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942), 53-61.
doi: 10.1214/aoms/1177731642. |
[3] |
I. Chueshov and M. Scheutzow,
On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144.
doi: 10.1080/1468936042000207792. |
[4] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[5] |
H. Crauel,
Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001), 413-427.
doi: 10.1017/S0024610700001915. |
[6] |
H. Crauel,
Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002. |
[7] |
H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692. |
[8] |
R. R. Davronov, U. U. Jamilov and M. Ladra,
Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015), 1163-1170.
doi: 10.1080/10236198.2015.1062481. |
[9] |
S. N. Ethier and T. G. Kurtz,
Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986. |
[10] |
F. Flandoli, B. Gess and M. Scheutzow,
Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.
doi: 10.1007/s00440-016-0716-2. |
[11] |
R. N. Ganikhodzhaev,
Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993), 489-506.
|
[12] |
N. N. Ganikhodzaev,
The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000), 6-8.
|
[13] |
U. U. Jamilov, M. Scheutzow and M. Wilke-Berenguer,
On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017), 228-243.
doi: 10.1017/etds.2015.30. |
[14] |
B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017.
doi: 10.1088/1742-6596/697/1/012017. |
[15] |
P. Mandl,
Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968. |
[16] |
P. Mörters and Y. Peres,
Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner. |
[17] |
G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999. |
[18] |
M. Scheutzow,
Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002), 233-240.
|
[19] |
M. Wilke Berenguer,
A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016. |
[1] |
Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699 |
[2] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[3] |
Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028 |
[4] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[5] |
Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347 |
[6] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[7] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[8] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[9] |
Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060 |
[10] |
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 |
[11] |
Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809 |
[12] |
M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure and Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805 |
[13] |
Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70. |
[14] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[15] |
Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 |
[16] |
Min Zhao, Shengfan Zhou. Random attractor for stochastic Boissonade system with time-dependent deterministic forces and white noises. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1683-1717. doi: 10.3934/dcdsb.2017081 |
[17] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[18] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[19] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[20] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]