Global random attractors and random point attractors for random dynamical systems have been studied for several decades. Here we introduce two intermediate concepts: Δ-Hausdorff-attractors are characterized by attracting all deterministic compact sets of Hausdorff dimension at most Δ, where Δ is a non-negative number, while cc-attractors attract all countable compact sets. We provide two examples showing that a given random dynamical system may have various different Δ-Hausdorff-attractors for different values of Δ. It seems that both concepts are new even in the context of deterministic dynamical systems.
Citation: |
L. Arnold,
Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.
![]() ![]() |
|
S. Bernstein
, Solution of a mathematical problem connected with the theory of heredity, Ann. Math. Statist., 13 (1942)
, 53-61.
doi: 10.1214/aoms/1177731642.![]() ![]() ![]() |
|
I. Chueshov
and M. Scheutzow
, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004)
, 127-144.
doi: 10.1080/1468936042000207792.![]() ![]() ![]() |
|
H. Crauel
and F. Flandoli
, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994)
, 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
|
H. Crauel
, Random point attractors versus random set attractors, Journal of the London Mathematical Society, 63 (2001)
, 413-427.
doi: 10.1017/S0024610700001915.![]() ![]() ![]() |
|
H. Crauel,
Random Probability Measures on Polish Spaces, Volume 11 of Stochastics Monographs, Taylor & Francis, London, 2002.
![]() ![]() |
|
H. Crauel and M. Scheutzow, Minimal random attractors, arXiv: 1712.08692.
![]() |
|
R. R. Davronov
, U. U. Jamilov
and M. Ladra
, Conditional cubic stochastic operator, Journal of Difference Equations and Applications, 21 (2015)
, 1163-1170.
doi: 10.1080/10236198.2015.1062481.![]() ![]() ![]() |
|
S. N. Ethier and T. G. Kurtz,
Markov Processes: Characterization and Convergence, John Wiley & Sons, Inc., New York, 1986.
![]() ![]() |
|
F. Flandoli
, B. Gess
and M. Scheutzow
, Synchronization by noise, Probab. Theory Related Fields, 168 (2017)
, 511-556.
doi: 10.1007/s00440-016-0716-2.![]() ![]() ![]() |
|
R. N. Ganikhodzhaev
, Quadratic Stochastic Operators, Lyapunov functions, and tournaments, Russian Academy of Sciences. Sbornik Mathematics, 76 (1993)
, 489-506.
![]() ![]() |
|
N. N. Ganikhodzaev
, The random models of heredity in the random environments, Dokl. Akad. Nauk Ruz, 12 (2000)
, 6-8.
![]() |
|
U. U. Jamilov
, M. Scheutzow
and M. Wilke-Berenguer
, On the random dynamics of Volterra quadratic operators, Ergodic Theory and Dynamical Systems, 37 (2017)
, 228-243.
doi: 10.1017/etds.2015.30.![]() ![]() ![]() |
|
B. J. Mamurov and U. A. Rozikov, On cubic stochastic operators and processes Journal of Physics: Conference Series, 697 (2016), 012017.
doi: 10.1088/1742-6596/697/1/012017.![]() ![]() |
|
P. Mandl,
Analytical Treatment of one-dimensional Markov Processes, Die Grundlehren der mathematischen Wissenschaften, Band 151. Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.
![]() ![]() |
|
P. Mörters and Y. Peres,
Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner.
![]() ![]() |
|
G. Ochs, Weak random attractors, Report 499, Institut für Dynamische Systeme, Universität Bremen, 1999.
![]() |
|
M. Scheutzow
, Comparison of various concepts of a random attractor: A case study, Archiv der Mathematik, 78 (2002)
, 233-240.
![]() ![]() |
|
M. Wilke Berenguer,
A Selection of Stochastic Processes Emanating from the Natural Sciences, Ph. D thesis, Technische Universität Berlin, 2016.
![]() |