We investigate the Oseledets splitting for Banach space-valued random dynamical systems based on the theory of center manifolds. This technique gives us random one-dimensional invariant spaces which turn out to be the Oseledets subspaces under suitable assumptions. We apply these results to a stochastic parabolic evolution equation driven by a fractional Brownian motion.
Citation: |
P. Acquistapace
, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations, 1 (1988)
, 433-457.
![]() ![]() |
|
P. Acquistapace
and B. Terreni
, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987)
, 47-107.
![]() ![]() |
|
H. Amann,
Linear and Quasilinear Parabolic Problems, Basel; Boston; Berlin: Birkhäuser Verlag, 1995.
![]() ![]() |
|
L. Arnold,
Random Dynamical Systems, Springer-Verlag Berlin Heidelberg New York, 1991.
![]() |
|
A. T. Bharucha-Reid,
Random Integral Equations, Academic Press New York and London, 1972.
![]() ![]() |
|
T. Caraballo
, J. Duan
, K. Lu
and B. Schmalfuß
, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010)
, 23-52.
![]() ![]() |
|
C. Castaing and M. Valadier,
Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
![]() ![]() |
|
X. Chen
, A. Roberts
and J. Duan
, Center manifolds for stochastic evolution equations, J. Difference Equ. Appl., 21 (2015)
, 606-632.
doi: 10.1080/10236198.2015.1045889.![]() ![]() ![]() |
|
C. Chicone
and Y. Latushkin
, Center manifolds for infinite dimensional nonautonomous differential equations, J. Differ. Equations, 141 (1997)
, 356-399.
doi: 10.1006/jdeq.1997.3343.![]() ![]() ![]() |
|
S.-N. Chow
and K. Lu
, Invariant manifolds for flows in Banach spaces, J. Differ. Equations, 74 (1988)
, 285-317.
doi: 10.1016/0022-0396(88)90007-1.![]() ![]() ![]() |
|
S.-N. Chow
, K. Lu
and J. Mallet-Paret
, Floquet theory for parabolic differential equations, J. Differ. Equations, 109 (1994)
, 147-200.
doi: 10.1006/jdeq.1994.1047.![]() ![]() ![]() |
|
S.-N. Chow
, K. Lu
and J. Mallet-Paret
, Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal, 129 (1995)
, 245-304.
doi: 10.1007/BF00383675.![]() ![]() ![]() |
|
T. S. Doan and S. Siegmund, Differential equations with random delay, Fields Communication Series, 64, in press, (2013), 279-303.
![]() ![]() |
|
J. Duan
, K. Lu
and B. Schmalfuß
, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dyn. Differ. Equ., 16 (2004)
, 949-972.
doi: 10.1007/s10884-004-7830-z.![]() ![]() ![]() |
|
K. -J. Engel and R. Nagel,
A Short Course on Operator Semigroups, Springer Verlag, 2006.
![]() ![]() |
|
M. Fabian, P. Habala, P. Hájek. V. Montesinos and V. Zizler,
Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, 2011.
![]() ![]() |
|
M. J. Garrido-Atienza
, B. Maslowski
and J. Šnupárková
, Semilinear stochastic equations with bilinear fractional noise, Discrete. Contin. Dyn. Syst. B, 21 (2016)
, 3075-3094.
doi: 10.3934/dcdsb.2016088.![]() ![]() ![]() |
|
C. Gonzàlez-Tokman and A. Quas, A concise proof of the multiplicative ergodic theorem on Banach spaces, J. Mod. Dyn. , 9 (2015), 237-255, arXiv: 1406.1955.
doi: 10.3934/jmd.2015.9.237.![]() ![]() ![]() |
|
C. Heil,
A Basis Theory Primer, Expanded Edition, Birkäuser, 2011.
![]() ![]() |
|
D. Henry,
Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Berlin Heidelberg New York, 1981.
![]() ![]() |
|
W. Li, K. Lu and B. Schmalfuß, A Hartman-Grobman theorem for scalar stochastic partial differential equations, Preperint.
![]() |
|
Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a banach space,
Mem. Amer. Math. Soc. , 206(2010), ⅵ+106 pp.
![]() ![]() |
|
K. Lu
and B. Schmalfuß
, Invariant manifolds for stochastic wave equations, J. Differ. Equations, 236 (2007)
, 460-492.
doi: 10.1016/j.jde.2006.09.024.![]() ![]() ![]() |
|
M. B. Marcus
, Hölder conditions for continuous Gaussian processes, Osaka. J. Math., 7 (1970)
, 483-493.
![]() ![]() |
|
J. Mierczyński
and W. Shen
, Principal lyapunov exponents and principal floquet spaces of positive random dynamical systems. Ⅰ. general theory, Trans. Amer. Math. Soc., 365 (2013)
, 5329-5365.
doi: 10.1090/S0002-9947-2013-05814-X.![]() ![]() ![]() |
|
S.-E. A. Mohammed
, T. Zhang
and H. Zhao
, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Memoirs of the American Mathematical Society, 196 (2008)
, 1-105.
![]() ![]() |
|
S.-E. A. Mohammed
and M. K. R. Scheutzow
, The stable manifold theorem for stochastic differential equations, The Annals of Probability, 27 (1999)
, 615-652.
doi: 10.1214/aop/1022677380.![]() ![]() ![]() |
|
V. I. Oseledets
, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968)
, 197-231.
![]() ![]() |
|
A. Pazy,
Semigroups of Linear Operators and Applications to PDEs, Springer-Verlag New York, 1983.
![]() ![]() |
|
A. Pietsch,
History of Banach spaces and linear operators, Birkäuser, 2007.
![]() ![]() |
|
M. Pronk
and M. C. Veraar
, A new approach to stochastic evolution equations with adapted drift, J. Differ. Equations, 256 (2014)
, 3634-3683.
doi: 10.1016/j.jde.2014.02.014.![]() ![]() ![]() |
|
D. Ruelle
, Characteristic exponents and invariant manifolds in Hilbert spaces, Annals of math., 115 (1982)
, 243-290.
doi: 10.2307/1971392.![]() ![]() ![]() |
|
S. G. Samko, A. A. Kilbas and O. I. Marichev,
Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, 1993.
![]() ![]() |
|
R. Schnaubelt
, Asymptotic behaviour of parabolic nonautonomous evolution equations, Functional Analytic Methods for Evolution Equations, Series Lecture Notes in Mathematics, 1885 (2014)
, 401-472.
![]() ![]() |
|
A. V. Skorochod,
Random Linear Operators,
"Naukova Dumka", Kiev, 1978. 200 pp.
![]() ![]() |
|
R. Temam,
Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag New York, 1998.
![]() ![]() |
|
J. M. A. M. van Neerven,
Stochastic Evolution Equations, ISEM Lecture Notes 2007/08.
![]() |
|
M. Zähle
, Integration with respect to fractal functions and stochastic calculus Ⅰ, Probab. Theory Relat. Fields, 111 (1998)
, 333-374.
doi: 10.1007/s004400050171.![]() ![]() ![]() |
|
M. Zähle
, Integration with respect to fractal functions and stochastic calculus Ⅱ, Math. Nachr., 225 (2001)
, 145-183.
doi: 10.1002/1522-2616(200105)225:1<145::AID-MANA145>3.0.CO;2-0.![]() ![]() ![]() |