We study well-posedness and asymptotic dynamics of a coupled system consisting of linearized 3D Navier-Stokes equations in a bounded domain and a classical (nonlinear) full von Karman plate equations that accounts for both transversal and lateral displacements on a flexible part of the boundary. Rotational inertia of the filaments of the plate is not taken into account. Our main result shows well-posedness of strong solutions to the problem, thus the problem generates a semiflow in an appropriate phase space. We also prove uniform stability of strong solutions to homogeneous problem.
Citation: |
G. Avalos
and F. Bucci
, Rational rates of uniform decay for strong solutions to a fluid-structure PDE system, Journal of Differential Equations, 258 (2015)
, 4398-4423.
doi: 10.1016/j.jde.2015.01.037.![]() ![]() ![]() |
|
G. Avalos
and T. Clark
, A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction, Evolution Equations and Control Theory, 3 (2014)
, 557-578.
doi: 10.3934/eect.2014.3.557.![]() ![]() ![]() |
|
A. Chambolle
, B. Desjardins
, M. Esteban
and C. Grandmont
, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005)
, 368-404.
doi: 10.1007/s00021-004-0121-y.![]() ![]() ![]() |
|
I. D. Chueshov
, Strong slutions and attractor of the von Karman equations (in Russian), Mathematics of the USSR-Sbornik, 69 (1990)
, 25-36.
![]() ![]() |
|
I. Chueshov
, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011)
, 1801-1812.
![]() ![]() |
|
I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping,
Mem. Amer. Math. Soc. , 195 (2008), ⅷ+183 pp.
![]() ![]() |
|
I. Chueshov and I. Lasiecka,
Von Karman Evolution Equations, Springer, New York, 2010.
![]() ![]() |
|
I. Chueshov
and I. Ryzhkova
, A global attractor for a fluid-plate interaction model, Comm. Pure Appl. Anal., 12 (2013)
, 1635-1656.
![]() ![]() |
|
I. Chueshov
and I. Ryzhkova
, Unsteady interaction of a viscous fluid with an elastic plate modeled by full von Karman equations, J. Diff. Eqs, 254 (2013)
, 1833-1862.
doi: 10.1016/j.jde.2012.11.006.![]() ![]() ![]() |
|
G. Duvaut and J. L. Lions,
Inequalities in Mechanics and Physics, Springer Berlin, New York, 1976.
![]() ![]() |
|
M. Grobbelaar-Van Dalsen
, On a fluid-structure model in which the dynamics of the structure involves the shear stress due to the fluid, J. Math. Fluid Mech., 10 (2008)
, 388-401.
doi: 10.1007/s00021-006-0236-4.![]() ![]() ![]() |
|
M. Grobbelaar-Van Dalsen
, A new approach to the stabilization of a fluid-structure interaction model, Appl. Anal., 88 (2009)
, 1053-1065.
doi: 10.1080/00036810903114841.![]() ![]() ![]() |
|
M. Grobbelaar-Van Dalsen
, Strong stability for a fluid-structure model, Math. Methods Appl. Sci., 32 (2009)
, 1452-1466.
doi: 10.1002/mma.1104.![]() ![]() ![]() |
|
H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Prog. Nonlinear Differ. Equ. Appl. , Basel: Birkhäuser, 50 (2002), 197-216.
![]() ![]() |
|
I. Lasiecka
, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control Optim., 36 (1998)
, 1376-1422.
doi: 10.1137/S0363012996301907.![]() ![]() ![]() |
|
J. -L. Lions and E. Magenes, Problémes Aux Limites non Homogénes et Applications, Vol. 1, Dunod, Paris, 1968.
![]() ![]() |
|
V. I. Sedenko,
Global in Time Well-posedness of Initial-boundary Value Problems for Marguerre-Vlasov Equations of Nonlinear Elastic Shells Theory, (in russian) Docthral Thesis, Rostov state university, 1995.
![]() |
|
V. I. Sedenko, The classical solubility of initial-boundary-value problems in the non-linear theory of oscillations of shallow shells, (in russian) Izvestiya: Mathematics, 60 (1996), 1027-1059.
![]() ![]() |
|
J. Simon
, Compact sets in the space Lp(0, T; B), Annali di Matematica Pura ed Applicata, Ser.4, 146 (1987)
, 65-96.
![]() ![]() |
|
R. Temam,
Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.
![]() ![]() |
|
H. Triebel,
Interpolation Theory, Functional Spaces and Differential Operators, North Holland, Amsterdam, 1978.
![]() ![]() |